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1 Fields

1.1 Real numbers

T 1.1: (Lindemann) There is no equation of form xn + an−1x
n−1 + . . .+ a0 = 0 with ai ∈ Q such that x = π is a solution

C 1.8: (Archimedic Principle) Let x ∈ R with x > 0 and y ∈ R. Then exists n ∈ N with y ≤ n · x

Max, min, absolute value Definition 1.10

Let x, y ∈ R. Then:

(i) max{x, y} =

{
x if y ≤ x

y if x ≤ y
(ii) min{x, y} =

{
y if y ≤ x

x if x ≤ y

(iii) The absolute value of
x ∈ R : |x| = maxx,−x

Absolute value properties Theorem 1.11

(i) |x| ≥ 0 ∀x ∈ R (ii) |xy| = |x||y| ∀x, y ∈ R (iii) |x+ y| ≤ |x|+ |y| (iv) |x+ y| ≥ ||x| − |y||

T 1.12: (Young’s Inequality) ∀ε > 0, ∀x, y ∈ R we have: 2|xy| ≤ εx2 + 1
εy
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Bounds Definition 1.13

(i) c ∈ R upper bound of A if ∀a ∈ A : a ≤ c. A bounded from above if upper bound for A exists
(ii) c ∈ R lower bound of A if ∀a ∈ A : a ≤ c. A bounded from below if lower bound for A exists
(iii) Element m ∈ R maximum of A if m ∈ A and m upper bound of A
(iv) Element m ∈ R minimum of A if m ∈ A and m lower bound of A

Supremum & Infimum Theorem 1.16

(i) The least upper bound of a set A bounded from above is called the Supremum and given by c := sup(A). It only
exists if the set is upper bounded.

(ii) The greatest lower bound of a set A bounded from below is called the Infimum and given by c := inf(A). It only
exists if the set is lower bounded.

Supremum & Infimum Corollary 1.17

Let A ⊂ B ⊂ R
(1) If B is bounded from above, we have sup(A) ≤ sup(B) (2) If B is bounded from below, we have inf(B) ≤ inf(A)

1.3 Complex numbers

Operations: i2 = −1 (NOT i =
√
−1 bc. otherwise 1 = −1). Complex number zj = aj + bji. Addition, Subtraction (a1 ± a2) +

(b1 ± b2)i. Multiplication (a1a2 − b1b2) + (a1b2 + a2b1)i. Division
a1b1 + a2b2
b21 + b22

+
a2b1 − a1b2

b21b
2
2

i;

Parts: R(a+ bi) := a (Real part), I(a+ bi) := b (imaginary part), |z| :=
√
a2 + b2 (modulus), a+ bi := a− bi (complex conjugate);

Polar coordinates: a+bi (normal form), r·eiϕ (polar form). Transformation polar→ normal: r·cos(ϕ)+r·sin(ϕ)i. Transformation

normal → polar: |z| · ei·arcsin(
b

|z| );

Fundamental Theorem of Algebra Theorem 1.18

Let n ≥ 1, n ∈ N and let
P (z) = zn + an−1z

n−1 + . . .+ a0, aj ∈ C

Then there exist z1, . . . , zn ∈ C such that

P (z) = (z − z1)(z − z2) . . . (z − zn)

The set {z1, . . . , zn} and the multiplicity of the zeros zj are hereby uniquely determined

Surjectivity Given a function f : X → Y , it is surjective, iff ∀y ∈ Y, ∃x ∈ X : f(x) = y (continuous function)

Injectivity x1 ̸= x2 ⇒ f(x1) ̸= f(x2)
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2 Sequences And Series

2.1 Limits

D 2.5: A sequence (an)n≥1 is converging if ∃l ∈ R s.t. ∀ε > 0 the set {n ∈ N∗ : an /∈]l − ε, l + ε[} is finite. Every convergent

sequence is bounded. L 2.7: (an)n≥1 converges to l = limn→∞ an ⇔ ∀ε > 0 ∃N ≥ 1 such that |an − l| < ε ∀n ≥ N

T 2.9: (an)n≥1 and (bn)n≥1 converging, a = limn→∞ an, b = limn→∞ bn. Then:

• (1) (an + bn)n≥1 converging and limn→∞(an + bn) =
a+ b;

• (2) (an · bn) converging and limn→∞(an · bn) = a · b;

• (3) If additionally bn ̸= 0 ∀n ≥ 1 and b ̸= 0, then
(an ÷ bn)n≥1 converging and limn→∞(an÷ bn) = a÷ b;

• (4) If ∃K ≥ 1 with an ≤ bn ∀n ≥ K ⇒ a ≤ b

2.2 Weierstrass Theorem

D 2.1: (an)n≥1 monotonically increasing (decreasing) if an ≤ an+1 (an ≥ an+1) ∀n ≥ 1

T 2.2: (Weierstrass) (an)n≥1 monotonically increasing (decreasing) and bounded from above (below) converges to limn→∞ an =

sup{an : n ≥ 1} (limn→∞ an = inf{an : n ≥ 1}), called supremum and infimum respectively Ex 2.7: limn→∞
(
1 + 1

n

)n
= e

L 2.8: (Bernoulli Inequality) (1 + x)n ≥ 1 + n · x ∀n ∈ N, x > −1

2.3 Limit Superior and limit inferior

We define for (an)n≥1 two monotone sequences bn = inf{ak : k ≥ n} and cn = sup{ak : k ≥ n}, then bn ≤ bn+1 ∀n ≥ 1 and
cn+1 ≤ cn ∀n ≥ 1, our series are bounded and converge and we have lim infn→∞ an := limn→∞ bn and lim supn→∞ an := limn→∞ cn.
We also have lim infn→∞ an ≤ lim supn→∞ an.

2.4 Cauchy-Criteria (Convergence Tests)

L 2.1: (an)n≥1 converges if and only if it is bounded and lim infn→∞ an = lim supn→∞ an

T 2.2: (Cauchy-Criteria) (an)n≥1 converging ⇔ ∀ε > 0 ∃N ≥ 1 such that |an − am| ≤ ε ∀n,m ≥ N

2.5 Bolzano-Weierstrass Theorem

D 2.1: (Closed interval) Subset I ⊆ R of form as seen below, with length L(I) = b− a (for (1)) or L(I) = +∞:

(1) [a, b]; a ≤ b; a, b ∈ R (2) [a,+∞[; a ∈ R (3) ]−∞, a]; a ∈ R (4) ]−∞,+∞[= R
An interval I is closed ⇔ for every converging sequence of elements of I the limit is also in I

T 2.6: (Cauchy-Cantor) Let I1 ⊇ . . . ⊇ In ⊇ In+1 ⊇ . . . a sequence of closed intervals with L(Ii) < +∞. Then
⋂∞

n≥1 In ̸= ∅. If
additionally limn→∞ L(In) = 0, then the set contains exactly one point. T 2.7: R is not countable

D 2.8: (Subsequence of (an)n≥1) (bn)n≥1 where bn = al(n) and l(n) ≤ l(n+ 1) ∀n ≥ 1

T 2.9: (Bolzano-Weierstrass) Every bounded sequence has a convergent subsequence. Also: lim inf
n→∞

an ≤ lim
n→∞

bn ≤ lim sup
n→∞

an

2.6 Sequences in other spaces than just real numbers

D 2.1: Sequences in Rd and C are noted the same as in R
D 2.2: (an)n≥1 in Rd is converging if ∃a ∈ Rd such that ∀ε > 0 ∃N ≥ 1 with ||an − a|| ≤ ε ∀n ≥ N

T 2.3: Let b = (b1, . . . , bn) (coordinates of b, since b is a vector). Then limn→∞ an = b ⇔ limn→∞ an,j = bj ∀1 ≤ j ≤ d

T 2.7: (an)n≥1 converges ⇔ (an)n≥1 is a Cauchy-Sequence; Every bounded sequence has a converging subsequence.

2.7 Series

D 2.1: (Convergence of a series)
∑∞

k=1 ak converges if (Sn)n≥1 (sequence of partial sums) converges, i.e.
∑∞

k=1 ak := limn→∞ Sn

Ex 2.2: (Geometric Series) Converges with limit 1
1−q , and sn = a1 · 1−qn

1−q Ex 2.3: (Harmonic Series)
∑∞

n=1
1
n diverges

T 2.4: Let
∑∞

k=1 ak and
∑∞

k=1 bk be converging, α ∈ C. Then:

1.

∞∑
k=1

(ak + bk) converging and

∞∑
k=1

(ak + bk) =

( ∞∑
k=1

ak

)
+

( ∞∑
k=1

bk

)

2.

∞∑
k=1

(α · ak) converging and

∞∑
k=1

(α · ak) = α ·

( ∞∑
k=1

ak

)
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T 2.5: (Cauchy-Criteria) A series
∑∞

k=1 ak is converging ⇔ ∀ε > 0 ∃N ≥ 1 with |
∑m

k=n ak| ≤ ε ∀m ≥ n ≥ N

T 2.6:
∑∞

k=1 ak with ak ≥ 0 ∀k ∈ N∗ converges ⇔ (Sn)n≥1, Sn =
∑n

k=1 ak is bounded from above

C 2.7: (Comparison theorem)
∑∞

k=1 ak and
∑∞

k=1 ak with 0 ≤ ak ≤ bk ∀k ≥ K (where K ≥ 1), then:∑∞
k=1 bk converging =⇒

∑∞
k=1 ak converging

∑∞
k=1 ak diverging =⇒

∑∞
k=1 bk diverging

D 2.9: (Absolute convergence) A series for which
∑∞

k=1 |ak| converges. Using the Cauchy-Criteria we get:

T 2.10: A series converging absolutely is also convergent and |
∑∞

k=1 ak| ≤
∑∞

k=1 |ak|

Convergence tests
∑∞

a=0
1
ap converges for n > 1

T 2.12: (Leibniz) Let (an)n≥1 monotonically decreasing with an ≥ 0 ∀n ≥ 1 and limn→∞ an = 0. Then S :=
∑∞

k=1(−1)k+1ak
converges and a1 − a2 ≤ S ≤ a1
Usage To show convergence, prove that (an)n≥1 is monotonically decreasing, an ≥ 0 and that the limit is 0

D 2.15: (Reordering) A series
∑∞

k=1 a
′
k for a

∑∞
k=1 ak if there is a bijection ϕ such that a′n = aϕ(n)

T 2.17: (Dirichlet) If
∑∞

k=1 ak has absolute convergence, every reordering of the series converges to the same limit.

T 2.18: (Ratio test) Series s with an ̸= 0 ∀n ≥ 1, s has absolute convergence if lim sup
n→∞

|an+1|
|an|

< 1. If lim inf
n→∞

|an+1|
|an|

> 1 it

diverges. If any of the two limits are 1, the test was inconclusive

T 2.19: (Root test) If lim sup
n→∞

n
√

|an| < 1 the series converges. If the limit is larger than one, it diverges

C 2.20: (Radius of convergence) A power series of form
∑∞

k=0 ckz
k has absolute convergence for all |z| < ρ and diverges for all

|z| > ρ. Let l = lim supn→∞
k
√
|ck|, then ρ =

{
+∞ if l = 0
1
l if l > 0

. The radius of convergence is then given by ρ if ρ ̸= ∞

Double series

D 2.23: For a double series
∑∞

i,j≥0 aij ,
∑∞

k=0 bk is a linear arrangement if there exists a bijection σ s.t. bk = aσ(k)

T 2.24: (Cauchy) Assume ∃B ≥ 0 s.t.

m∑
i=0

m∑
j=0

|aij | ≤ B ∀m ≥ 0. Then: Si :=

∞∑
j=0

aij ∀i ≥ 0 and Uj :=

∞∑
i=0

aij j ≥ 0

have absolute convergence, as well as

∞∑
i=0

Si and

∞∑
j=0

Uj and we have:

∞∑
i=0

Si =

∞∑
j=0

Uj .

Every linear double series has absolute convergence with same limit.

D 2.25: (Cauchy-Product)

∞∑
n=0

 n∑
j=0

an−jbj

 = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + . . . for two series

∞∑
i=0

ai,

∞∑
j=0

bj

T 2.27: If two series have absolute convergence, their Cauchy-Product converges and it is the terms of the two series expanded.

T 2.28: Let fn be a sequence. We assume that:

• f(j) := limn→∞ fn(j) exists ∀j ∈ N

• ∃g s.t. |fn(j)| ≤ g(j) ∀j, n ≥ 0 and
∑∞

j=0 g(j) converges
Then

∞∑
j=0

f(j) = lim
n→∞

∞∑
j=0

fn(j)

C 2.29: For every z ∈ C we have lim
n→∞

(
1 +

z

n

)n
= exp(z) and it converges, where exp(z) := 1 + z + z2

2! +
z3

3! + . . .
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3 Continuous Functions

3.1 Real-Valued functions

D 3.1: (Bounds) Let f ∈ RD, where RD is the set of all functions f : D → R, which is a vector space
• f is bounded from above if f(D) ⊆ R is bounded from above.
• f is bounded from below if f(D) ⊆ R is bounded from below.
• f is bounded if f(D) ⊆ R is bounded.

D 3.2: (Monotonicity) If D ⊆ R we have the following terms for monotonicity:
• monotonically increasing if ∀x, y ∈ D x ≤ y ⇒ f(x) ≤ f(y)
• strictly monotonically increasing if ∀x, y ∈ D x < y ⇒ f(x) < f(y)
• monotonically decreasing if ∀x, y ∈ D x ≤ y ⇒ f(x) ≥ f(y)
• strictly monotonically decreasing if ∀x, y ∈ D x < y ⇒ f(x) > f(y)
• monotone if f is monotonically increasing or monotonically decreasing
• strictly monotone if f is strictly monotonically increasing or strictly monotonically decreasing

3.2 Continuity

Intuition: we can draw a continuous function without lifting the pen.

D 3.1: (Continuity of f in x0) If for every ε > 0 exists a δ s.t. |x − x0| < δ ⇒ |f(x) − f(x0)| < ε D 3.2: (Continuity) f

continuous if continuous in all points of D T 3.4: f is continuous in x0 ⇐⇒ for (an)n≥1 limn→∞ an = x0 ⇒ f(an) = f(x0)

C 3.5: Let f , g continuous in x0, then f + g, λ · f , f · g, f ◦ g are continuous in x0 and if g(x0) ̸= 0, f
g is continuous in x0 for

f
g : D ∩ {x ∈ D : g(x) ̸= 0} → R

D 3.6: (Polynomial function) P (x) = anx
n + . . . + a0, if an ̸= 0, deg(P ) = n (degree of P ) C 3.7: They are continuous on all

of R C 3.8: P,Q pol. func. on R with Q ̸= 0, where x1, . . . , xm are zeros of Q. Then: P
Q : R\{x1, . . . , xm} → R is continuous

3.3 Intermediate value theorem

T 3.1: Let I ⊆ R be an interval, f : I → R a continuous function and a, b ∈ I. For each c between f(a) and f(b) exists a z

between a and b with f(z) = c C 3.2: Let P be a polynomial with deg(P ) = n, n odd. Then, P has at least one zero in R

3.4 Min-Max-Theorem

D 3.2: (Compact interval) if interval I is of form I = [a, b], a ≤ b L 3.3: f, g continuous in x0. Then: |f |, max(f, g) and

min(f, g) are continuous in x0 (min(f, g) is the minimum of the two functions at each x) L 3.4: (xn)n≥1 converging series in R
with lim

n→∞
xn ∈ R and a ≤ b. If {xn : n ≥ 1} ⊆ [a, b] we have lim

n→∞
xn ∈ [a, b] T 3.5: Let f continuous on compact interval I. Then

∃u ∈ I and ∃v ∈ I with f(u) ≤ f(x) ≤ f(v) ∀x ∈ I. f is bounded.

3.5 Inverse function theorem

T 3.1: Let D1, D2 ⊆ R, f : D1 → D2, g : D2 → R, x0 ∈ D1. If f cont. in x0, g in f(x0) then f ◦ g : D1 → R is continuous in x0

C 3.2: If in theorem 3.5.1 f continuous on D1 and g on D2, then g ◦ f is continuous on D1

T 3.3: (Inverse function theorem) Let f : I → R continuous, strictly monotone and let I ⊆ R be an interval. Then: J := f(I) ⊆ R
is an interval and f−1 : J → I continuous and strictly monotone.

3.6 Real-Valued exponential function

The exponential function exp : C → C is usually given by a power series converging on all C: exp(z) :=

∞∑
n=0

zn

n!
, here for z ∈ R.

exp is bijective, continuous, strictly monotonically increasing and smooth. exp−1(x) = ln(x)

T 3.1: exp : R →]0,+∞[ is strictly monotonically increasing, continuous and surjective C 3.2: exp(x) > 0 ∀x ∈ R
C 3.3: exp(z) > exp(y) ∀z > y C 3.4: exp(x) ≥ 1 + x ∀x ∈ R C 3.5: ln :]0,+∞[→ R is strictly monotonically increasing,

continuous and bijective. We have ln(a · b) = ln(a) + ln(b) ∀a, b ∈]0,+∞[. It is the inverse function of exp C 3.6:

1. For a > 0 ]0,+∞[ → ]0,+∞[ x 7→ xa is a continuous, strictly monotonically increasing bijection.
2. For a < 0 ]0,+∞[ → ]0,+∞[ x 7→ xa is a continuous strictly monotonically decreasing bijection.

3. ln(xa) = a ln(x) ∀a ∈ R, ∀x > 0 4. xa · xb = xa+b ∀a, b ∈ R, ∀x > 0 5. (xa)b = xa·b ∀a, b ∈ R, ∀x > 0
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3.7 Convergence of sequences of functions

D 3.1: (Pointwise convergence) (fn)n≥1 converges pointwise towards a function f : D → R if for all x ∈ D f(x) = limn→∞ fn(x)

D 3.3: (Weierstrass) Sequence fn converges uniformly in D to f if ∀ε > 0 ∃N ≥ 1 s.t. ∀n ≥ N, ∀x ∈ D : |fn(x)− f(x)| < ε

T 3.4: fn sequence of (in D) continuous functions converging to f uniformly in D. Then, f is continuous (in D)

D 3.5: (Uniform convergence of (fn)n≥1)) fn if ∀x ∈ D f(x) := limn→∞ fn(x) exists and (fn)n≥1 converges uniformly to f

C 3.6: fn converges uniformly in D ⇐⇒ ∀ε > 0 ∃N ≥ 1 such that ∀n,m ≥ N, ∀x ∈ D |fn(x)− fm(x)| < ε

C 3.7: If fn is a uniformly converging sequence of functions, then f(x) := limn→∞ fn(x) is continuous

D 3.8:

∞∑
k=0

fk(x) converges uniformly if Sn(x) :=

n∑
k=0

fk(x) does T 3.9: Assume |fn(x)| ≤ cn ∀x ∈ D and that

∞∑
n=0

cn converges.

Then
∑fn(x)

n=0 converges uniformly in D and f(x) :=
∑∞

n=0 fn(x) is continuous in D

D 3.10: (Radius of convergence) See C 2.7.19 T 3.11: A power series converges uniformly on ]− r, r[ where 0 ≤ r < ρ

3.8 Trigonometric Functions

T 3.1: sin : R → R and cos : R → R are continuous functions T 3.2:

1. exp iz = cos(z) + i sin(z) ∀z ∈ C
2. cos(z) = cos(−z) and sin(−z) = − sin(z) ∀z ∈ C

3. sin(z) =
eiz − e−iz

2i
; cos(z) =

eiz + eiz

2

4. sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
cos(z + w) = cos(z) cos(w)− sin(z) sin(w)

5. cos(z)2 + sin(z)2 = 1 z ∈ C

C 3.3: sin(2z) = 2 sin(z) cos(z) and cos(2z) = cos(z)2 − sin(z)2

3.9 Pie (delicious)

T 3.1: The sine function has at least one zero on ]0,+∞[ and π := inf{t > 0 : sin(t) = 0}. Then sin(π) = 0, π ∈]2, 4[;
∀x ∈]0, π[: sin(x) > 0 and e

iπ
2 = i C 3.2: x ≥ sin(x) ≥ x− x3

3! ∀0 ≤ 0 ≤
√
6 C 3.3:

1. eiπ = −1, e2iπ = 1
2. sin

(
x+ π

2

)
, cos

(
x+ π

2

)
= − sin(x) ∀x ∈ R

3. sin(x+ π) = − sin(x), sin(x+ 2π) = sin(x) ∀x ∈ R
4. cos(x+ π) = − cos(x), cos(x+ 2π) = cos(x) ∀x ∈ R

5. Zeros of sine = {k · π : k ∈ Z}
sin(x) > 0 ∀x ∈]2kπ, (2k + 1)π[, k ∈ Z sin(x) >
0 ∀x ∈](2k + 1)π, (2k + 2)π[, k ∈ Z

6. Zeros of cosine = {π
2 · k · π : k ∈ Z}

cos(x) > 0 ∀x ∈] − π
2 + 2kπ,−π

2 + (2k + 1)π[, k ∈ Z
cos(x) > 0 ∀x ∈]− π

2+(2k+1)π,−π
2+(2k+2)π[, k ∈ Z

3.10 Limits of functions

D 3.1: (Cluster point)DE: “Häufungspunkt” x0 ∈ R of D if ∀δ > 0 (]x0 − δ, x0 + δ[\{x0}) ∩D ̸= ∅
D 3.3: A ∈ R is the limit of f(x) for x → x0 denoted limx→x0 f(x) = A, where x0 is a cluster point, if:

∀ε ∃δ > 0 s.t. ∀x ∈ D ∩ (]x0 − δ, x0 + δ[\{x0}) : |f(x)−A| < ε

T 3.7: Let D,E ⊆ R, xr a cluster point of D and f : D → E a function. Assume that y0 := limx→x0
exists and y0 ∈ E. If

g : E → R is continuous in y0, we have limx→x0
g(f(x)) = g(y0)

Left / Right hand limit

Used when we have functions with poles, we approach them from both sides to evaluate said pole. Differently from at Kanti, we
note it x → x−

0 instead of x ↑ x0
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4 Differentiable Functions

4.1 Differentiation

D 4.1: (Differentiability) f is differentiable in x0 if f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

h→0

f(x0 + h)− f(x0)

h
exists.

T 4.3: x0 cluster point of D: f is differentiable in x0 ⇐⇒ ∃c ∈ R and r : D → R with (if it applies c = f ′(x0) is unique):

f(x) = f(x0) + c(x− x0) + r(x)(x− x0) as well as r(x0) = 0 and r is continuous in x0

T 4.4: f differentiable in x0 ⇔ ∃ϕ : D → R continuous in x = and f(x) = f(x0) + ϕ(x)(x − x0) ∀x ∈ D. Then ϕ(x0) = f ′(x0)

C 4.5: x0 ∈ D cluster point of D. If f differentiable in x0, f continuous in x0 D 4.7: f is differentiable on all D if for each
cluster point x0 it is differentiable in x0

T 4.10: (Basic Differentiation rules) Let f, g be functions differentiable in x0

• (f + g)′(x0) = f ′(x0) + g′(x0)
• (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g

′(x0)
• if g(x0) ̸= 0,

(
f

g

)′

(x0) =
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2

T 4.12: (Chain rule) x0 ∈ D cluster point, f : D → E differentiable in x0 s.t. y0 := f(x0) ∈ E cluster point of E and let
g : E → R differentiable in y0. Then g ◦ f : D → R differentiable in x0 and (g ◦ f)′(x0) = g′(f(x0)) · f ′(x0)

C 4.13: Let f : D → E be a bijective function, differentiable in x0 (cluster point) and f ′(x0) ̸= 0 as well as f−1 continuous in

y0 = f(x0). Then y0 cluster point of E, f−1 differentiable in y0 and (f−1)′(y0) =
1

f ′(x0)

4.2 First derivative: Important Theorems

D 4.1: (1) f has maximum at x0 if ∃δ > 0 s.t. f(x) ≤ f(x0) ∀x ∈]x0 − δ, x0 + δ[ ∩ D (2) f has minimum at x0 if ∃δ > 0 s.t.
f(x) ≥ f(x0) ∀x ∈]x0 − δ, x0 + δ[ ∩ D (3) f has extrema in x0 if it is either max or min

T 4.2: Assume f differentiable in x0. From the following we have that if f ′(x0) = 0, there is an extrema at x0

1. If f ′(x0) > 0 ∃δ > 0 s.t. f(x) > f(x0) ∀x ∈]x0, x0+ δ[
and f(x) < f(x0) ∀x ∈]x0 − δ, x0[

2. If f ′(x0) < 0 ∃δ > 0 s.t. f(x) < f(x0) ∀x ∈]x0, x0+ δ[
and f(x) > f(x0) ∀x ∈]x0 − δ, x0[

T 4.3: Let f : [a, b] → R continuous and differentiable in ]a, b[. If f(a) = f(b), ∃ξ ∈]a, b[ with f ′(ξ) = 0

T 4.4: Let f as above, then ∃ξ ∈]a, b[ s.t. f(b)− f(a) = f ′(ξ)(b− a) C 4.5: Let f, g as above (I = [a, b]), then:

1. f ′(ξ) = 0 ∀ξ ∈]a, b[ ⇒ f constant
2. f ′(ξ) = g′(ξ) ∀ξ ∈]a, b[ ⇒ ∃c ∈ R with f(x) =

g(x) + c ∀x ∈ [a, b]
3. f ′(ξ) ≥ 0 ∀ξ ∈]a, b[ ⇒ f mon. increasing on I
4. f ′(ξ) > 0 ∀ξ ∈]a, b[ ⇒ f strictly mon. inc. on I

5. f ′(ξ) ≤ 0 ∀ξ ∈]a, b[ ⇒ f mon. decreasing on I
6. f ′(ξ) < 0 ∀ξ ∈]a, b[ ⇒ f strictly mon. dec. on I
7. If ∃M ≥ 0 s.t. |f ′(ξ)| ≤ M ∀ξ ∈]a, b[, then ∀x1, x2 ∈

[a, b] |f(x1)− f(x2)| ≤ M |x1 − x2|

T 4.10: f, g, ξ as defined previously. Then g′(ξ)(f(b) − f(a)) = f ′(ξ)(g(b) − g(a)). If g′(x) ̸= 0 x ∈]a, b[, g(a) ̸= g(b) and
f(b)− f(a)

g(b)− g(a)
=

f ′(ξ)

g′(ξ)
T 4.11: (L’Hospital’s rule) f, g as before, with g′(x) ̸= 0 ∀x ∈]a, b[. If lim

x→b−
f(x) = 0, lim

x→b−
g(x) = 0 and

λ := lim
x→b−

f ′(x)

g′(x)
exists, we have lim

x→b−

f(x)

g(x)
= lim

x→b−

f ′(x)

g′(x)
D 4.14: f convex on I if ∀x ≤ y ∈ I and λ ∈ [0, 1] f(λx+ (1− λ)y) ≤

λf(x) + (1− λ)f(y). Strictly convex if < instead of ≤ in all occurences T 4.17: f (as usual) (strictly) convex ⇐⇒ f ′ (strictly)

monotonically increasing. C 4.18: If f ′′ exists, then f (strictly) convex if f ′′ ≥ 0 (or f ′′ > 0) on ]a, b[

4.3 Higher derivatives

Higher derivatives Definition 4.1

1. For n ≥ 2, f differentiable n times in D if f (n−1) is differentiable in D. f (n) := (f (n−1))′, n-th derivative of f
2. f is n-times continuously differentiable in D if f (n) exists and is continuous in D
3. f is called smooth (de: glatt) in D if ∀n ≥ 1 f (n) exists.

T 4.3: (1) (f + g)(n) = f (n) + g(n), (2) (f · g)(n) =
∑n

k=0

(
n
k

)
f (k)g(n−k) (binomial expansion), for f, g differentiable n times

T 4.5: f, g as above; If g(x) ̸= 0 ∀x ∈ D, then
f

g
differentiable n-times in D T 4.6: Let E,D ⊆ R for which each point is a

cluster point and f : D → E and g : E → D, both differentiable n times. Then (g ◦ f)(n)(x) =
∑n

k=1 An,k(x)(g
(k) ◦ f)(x) where

An,k is a polynomial in the functions f ′, f (2), . . . , f (n+1−k)
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4.4 Power series and Taylor approximation

T 4.1: Assume that (fn)n≥1 (for fn and f ′
n continuously differentiable) and (f ′

n)n≥1 converge uniformly on ]a, b[ for f :]a, b[→ R
with f := lim

n→∞
fn and p := lim

n→∞
f ′
n. Then f is continuously differentiable and f ′ = p

T 4.2: Power series

∞∑
k=0

ckx
k with ρ > 0, f(x) =

∞∑
k=0

ck(x− x0)
k differentiable on ]x0 − ρ, x0 + ρ[ and f ′(x) =

∞∑
k=1

kck(x− x0)
k−1

C 4.3: As in 4.4.1, f smooth on conv. interval and f (j)(x)

∞∑
k=j

ck
k!

(k − j)!
(x− x0)

k−j . Specifically, cj =
f (j)(x0)

j!

T 4.5: f continuous, ∃f (n+1). For each a < x ≤ b ∃ξ ∈]a, x[ with f(x)

n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 C 4.6: (Taylor

Approximation) Same as above, but f : [c, d] → R instead of f : [a, b] → R and c < a < d and ξ between x and a.

C 4.7: a < x0 < b and f as before, assume that f ′(x0) = f (2)(x0) = . . . = f (n)(x0) = 0. Then:

1. If n even and x0 local extrema, f (n+1)(x0) = 0

2. If n odd and f (n+1)(x0) > 0, x0 strict local minimum

3. If n odd and f (n+1)(x0) < 0, x0 strict local maximum

C 4.8: f differentiable twice and a < x0 < b, assume f ′(x0) = 0

1. f (2)(x0) > 0, x0 strict local minimum 2. f (2)(x0) < 0, x0 strict local maximum

4.5 Exercise Help

Common limits Common Taylor Polynomials

8



5 Integrals

5.1 Definition and integrability

D 5.1: (Partition) finite subset P ⊂ I where I = [a, b] and {a, b} ⊆ P

Lower sum: s(f, P ) :=

n∑
i=1

fiδi, fi = inf
xi−1≤x≤xi

f(x), Upper sum: S(f, P ) :=

n∑
i=1

fiδi, fi = sup
xi−1≤x≤xi

f(x), δi sub-interval

L 5.2: Let P ′ be a specification of P , then s(f, P ) ≤ s(f, P ′) ≤ S(f, P ′) ≤ S(f, P ); for arbitrary P1, P2, s(f, P1) ≤ S(f, P2)

D 5.3: f bounded is integrable if s(f) = S(f) and the integral is

∫ b

a

f(x) dx

T 5.4: f bounded, integrable ⇐⇒ ∀ε > 0 ∃P ∈ P(I) with S(f, P )− s(f, P ) ≤ ε where P(I) is the set of all partitions of I

T 5.9: f integrable ⇐⇒ ∀ε > 0 ∃δ > 0 s.t. ∀P ∈ Pδ(I), S(f, P )− s(f, P ) < ε, where Pδ(I) is set of P for which max
1≤i≤n

δi ≤ δ

C 5.10: f integrable with A :=
∫ b

a
f(x) dx ⇐⇒ ∀ε > 0 ∃δ > 0 s.t. ∀P ∈ P(I) with δ(P ) < δ and ξ1, . . . , ξn with ξi ∈ [xi− 1, xi]

and P = {x0, . . . , xn},

∣∣∣∣∣A−
n∑

i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

5.2 Integrable functions

T 5.1: f, g bounded, integrable and λ ∈ R. Then f + g, λ · f , f · g, |f |, max(f, g), min(f, g) and f
g (if |g(x)| ≥ β > 0 ∀x ∈ [a, b]

are all integrable C 5.3: Let P,Q be polynomials and Q has no zeros on [a, b]. Then: [a, b] → R and x 7→ P (x)
Q(x) integrable

D 5.4: (uniform continuity) if ∀ε > 0 ∃δ > 0 ∀x, y ∈ D : |x − y| < δ =⇒ |f(x) − f(y)| < ε T 5.6: f continuous on compact

interval I = [a, b] =⇒ f is uniformly continuous on I T 5.7: f continuous =⇒ f integrable T 5.8: f monotone =⇒ f integrable

T 5.10: I ⊂ R compact interval with I = [a, b] and f1, f2 bounded, integrable and λ1, λ2 ∈ R.

Then:

∫ b

a

(λ1f1(x) + λ2 + f2(x)) dx = λ1

∫ b

a

f1(x) dx+ λ2

∫ b

a

f2(x) dx

5.3 Inequalities and Intermediate Value Theorem

T 5.1: f, g bounded, integrable and f(x) ≤ g(x)∀x ∈ [a, b], then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx C 5.2: if f bounded, integrable,∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ ∫ b

a
|f(x)| dx T 5.3: Let f, g bounded, integrable, then

∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤
√∫ b

a
f2(x) dx ·

√∫ b

a
g2(x) dx

T 5.4: (Intermediate Value Theorem) f continuous. Then ∃ξ ∈ [a, b] s.t.

∫ b

a

dx = f(ξ)(b − a) T 5.6: Let f continuous, g

bounded and integrable with g(x) ≥ 0 ∀x ∈ [a, b]. Then ∃ξ ∈ [a, b] s.t.

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) d

5.4 Fundamental theorem of Calculus

First Fundamental Theorem of Calculus Theorem 5.1

Let a < b and f : [a, b] → R continuous. The function

F (x) =

∫ x

a

f(t) dt, a ≤ x ≤ b

is differentiable in [a, b] and F ′(x) = f(x) ∀x ∈ [a, b]

Proof: Split the integral:
∫ x0

a
f(t) dt +

∫ x

x0
f(t) dt =

∫ x

a
f(t) dt, so F (x) − F (x0) =

∫ x

x0
f(t) dt. Using the Intermediate Value

Theorem, we get
∫ x

x0
f(t) dt = f(ξ)(x− x0) and for x ̸= x0 we have F (x)−F (x0)

x−x0
= f(ξ) and since ξ is between x0 and x and since f

continuous, limx→x0

F (x)−F (x0)
x−x0

= f(x0) □

D 5.2: (Anti-derivative) F for f if F is differentiable in [a, b] and F ′ = f in [a, b]

Second Fundamental Theorem of Calculus Theorem 5.3

f as in 5.4.1. Then there exists an anti-derivative F of f that is uniquely determined bar the constant of integration and∫ b

a

f(x) dx = F (a)− F (b)
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Proof: Existence of F given by 5.4.1. If F1 and F2 are anti-derivatives of f , then F ′
1 − F ′

2 = f − f = 0, i.e. (F1 − F2)
′ = 0.

From 4.2.5 (1) we have that F1 − F2 is constant. We have F (x) = C +
∫ x

a
f(t) dt, where C is an arbitrary constant. Especially,

F (b) = C +
∫ b

a
f(t) dt, F (a) = C and thus F (b)− F (a) = C +

∫ b

a
f(t) dt− C =

∫ b

a
f(t) dt

T 5.5: (Integration by parts)

∫ b

a

f(x)g′(x) dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x)g(x) dx. Be wary of cycles

T 5.6: (Integration by substitution) ϕ continuous and differentiable. Then

∫ b

a

f(ϕ(t))ϕ′(t) dt =

∫ ϕ((b))

ϕ(a)

f(x) dx

To use the above, in a function choose the inner function appropriately, differentiate it, substitute it back to get a more easily

integrable function. C 5.9: I ⊆ R and f : I → R continuous

1. Let a, b, c ∈ R s.t. the closed interval with endpoints
a+ c, b+ c is contained in I. Then∫ b+c

a+c

f(x) dx =

∫ b

a

f(t+ c) dt

2. Let a, b, c ∈ R, c ̸= 0 s.t. the closed interval with end-
points ac, b is contained in I. Then

1

c

∫ bc

ac

f(x) dx =

∫ b

a

f(ct) dt

5.5 Integration of converging series

T 5.1: Let fn : [a, b] → R be a sequence of bounded, integrable functions converging uniformly to f . Then f bounded, integrable

and limn→∞
∫ b

a
fn(x) dx =

∫ b

a
f(x) dx C 5.2: fn s.t. the series converges. Then

∑∞
n=0

∫ b

a
fn(x) dx =

∫ b

a
(
∑∞

n=0 fn(x)) dx

C 5.3: f(x) =
∑∞

n=0 xkx
k with ρ > 0. Then ∀0 ≤ r < ρ, f integrable on [−r, r] and ∀x ∈]− ρ, ρ[,

∫ x

0
f(t) dt =

∑∞
n=0

cn
n+1x

n+1

5.6 Euler-McLaurin summation

D 5.1: ∀k ≥ 0, the k-th Bernoulli-Polynomial Bk(x) = k!Pk(x), where P ′
k = Pk−1 ∀k ≥ 1 and

∫ 1

0
Pk(x) dx = 0 ∀k ≥ 1

D 5.2: Let B0 = 1. ∀k ≥ 2 Bk−1 is given recursively by
∑k−1

i=0

(
k
i

)
Bi = 0 T 5.3: (McLaurin Series) Bk(x) =

∑k
i=0

(
k
i

)
Bix

k−i

T 5.5: f k times continuously differentiable, k ≥ 1. Then for B̃k(x) =

{
Bk(x) for 0 ≤ x < 1

Bk(x− n) for n ≤ x ≤ n+ 1 where n ≥ 1
that

1. For k = 1:
∑n

i=1 f(i) =
∫ n

0
f(x) dx+ 1

2 (f(n)− f(0)) +
∫ n

0
B̃1(x)f

′(x) dx below: R̃k = (−1)k−1

k!

∫ n

0
B̃k(x)f

(k)(x) dx

2. For k ≥ 2:

n∑
i=1

f(i) =

∫ n

0

f(x) dx+
1

2
(f(n)−f(0))+

k∑
j=2

(−1)jBj

j!
(f (j−1)(n)−f (j−1)(0))+R̃k, R̃k =

k!∑
(−1)(k−1)

∫ n

0

B̃1(x)f
(k)(x) dx

5.7 Stirling’s Formula

T 5.1: n! =

√
2πnnn

en
· exp

(
1

12n
+R3(n)

)
, |R3(n)| ≤

√
3

216 · 1
n2 ∀n ≥ 1 L 5.2: ∀m ≥ n+ 1 ≥ 1 : |R3(m,n)| ≤

√
3

216

(
1
n2 − 1

m2

)
5.8 Improper Integrals

D 5.1: f bounded and integrable on [a, b]. If lim
b→∞

∫ b

a

f(x) dx exists, we denote it
∫∞
a

f(x) dx and call f integrable on [a,+∞[

L 5.3: f : [a,∞[→ R bounded and integrable on [a, b]∀b > 0. If |f(x) ≤ g(x) ∀x ≥ a and g(x) integrable on [a,∞[, then f is

integrable on [a,∞[. If 0 ≤ g(x) ≤ f(x) and
∫∞
a

g(x) dx diverges, so does
∫∞
a

f(x) dx T 5.5: f : [1,∞[→ [0,∞[ monotonically

decreasing.
∑∞

n=1 f(n) converges ⇔
∫∞
1

f(x) dx converges D 5.9: If f :]a, b] is bounded and integrable on [a + ε, b], ε > 0, but

not necessarily on ]a, b], then f is integrable if limε→0+
∫ b

a+ε
f(x) dx exists, then called

∫ b

a
f(x) dx

D 5.12: (Gamma function) For s > 0 we define Γ(s) :=
∫∞
0

e−xxs−1 dx

T 5.13: (1) Γ(s) fulfills Γ(1) = 1, Γ(s+ 1) = sΓ(s) ∀s > 0 and Γ(λx+ (1− λ)y) ≤ Γ(x)λΓ(y)1−λ ∀x, y > 0, ∀0 ≤ λ ≤ 1

(2) Γ(s) sole function ]0,∞[ → ]0,∞[ that fulfills the above conditions. Additionally: Γ(x) = lim
n→∞

n!nx

x(x+ 1) . . . (x+ n)
∀x > 0

T 5.14: Let p, q > 1 with 1
p + 1

q = 1, for all f, g : [a, b] → R continuous, we have
∫ b

a
|f(x)g(x)| dx ≤ ||f ||p||g||q

5.9 Partial fraction decomposition

Used for rational polynomial functions. Start by splitting the fraction into parts (usually factorized, so find zeros). Split denominator
into the found parts, e.g. a

x−4 + b
x+2 , then expand to the same denominator on all fractions. Then p(x) (the numerator) of the

original fraction has to equal the new fraction’s numerator, so use SLE to find coefficients. Get the numerator into the form of a
polynomial, so e.g. (a+ b) · x+ (2a− 4b), then SLE is∣∣∣∣ 2 = a+ b

−4 = 2a− b

∣∣∣∣⇔ a =
2

3
, b =

4

3
for our rational polynomial

2x− 4

x2 − 2x− 8

We can then insert our coefficients into the split fraction (here a
x−4 . . .) and we can integrate normally
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6 Table of derivatives and Antiderivatives

Antiderivative Function Derivative

xn+1

n+ 1
xn n · xn−1

ln |x| 1

x
= x−1 −x−2 = − 1

x2

2
3x

3
2

√
x = x

1
2

1

2 ·
√
x

n
n+1x

1
n+1 n

√
x = x

1
n 1

nx
1
n−1

ex ex ex

exp(x) exp(x) exp(x)
1

a·(n+1) (ax+ b)n+1 (ax+ b)n n · (ax+ b)n−1 · a
x · (ln |x| − 1) ln(x) 1

x = x−1

1

ln(a)
· ax ax ax · ln(a)

x
ln(a) · (ln |x| − 1) loga |x|

1

x · ln(a)

− cos(x) sin(x) cos(x)
sin(x) cos(x) − sin(x)

− ln | cos(x)| tan(x)
1

cos2(x)

x · arcsin(x) +
√
1− x2 arcsin(x)

1√
1− x2

x · arccos(x)−
√
1− x2 arccos(x) − 1√

1− x2

x · arctan(x)− ln(x2 + 1)

2
arctan(x)

1

x2 + 1

ln | sin(x)| cot(x) − 1

sin2(x)
cosh(x) sinh(x) cosh(x)
sinh(x) cosh(x) sinh(x)

ln | cosh(x)| tanh(x)
1

cosh2(x)
arcsinh(x) 1√

1+x2

arccosh(x) 1√
x2−1

arctanh(x) 1
1−x2

Logarithms

(Change of base) loga(x) =
ln(x)
ln(a) (Powers) loga(x

y) = y loga(x)

(Div, Mul) loga(x · (÷)y) = loga(x) + (−) loga(y)
loga(1) = 0 ∀a ∈ N

Integration by parts Should we get unavoidable cycle, where

we have to integrate the same thing again, we may simply add
the integral to both sides, and we thus have 2 times the integral
on the left side and then finish the integration by parts on the
right hand side and in the end divide by the factor up front to
get the result.

Inverse hyperbolic functions

• arcsinh(x) = ln
(
x+

√
x2 + 1

)
• arccosh(x) = ln

(
x+

√
x2 − 1

)
• arctanh(x) = 1

2 ln
(

1+x
1−x

)
Complement trick

√
ax+ b−

√
cx+ d = ax+b−(cx+d)√

ax+b+
√
cx+d

Values of trigonometric functions

° rad sin(ξ) cos(ξ) tan(ξ)

0° 0 0 1 1

30° π
6

1
2

√
3
2

√
3
2

45° π
4

√
2
2

√
2
2 1

60° π
3

√
3
3

1
2

√
3

90° π
2 1 0 ∅

120° 2π
3

√
3
2 − 1

2 −
√
3

135° 3π
4

√
2
2 −

√
2
2 −1

150° 5π
6

1
2 −

√
3
2 −

√
3
2

180° π 0 −1 0

Trigonometrie cot(ξ) =
cos(ξ)

sin(ξ)
, tan(ξ) =

sin(ξ)

cos(ξ)

sinh(x) := ex−e−x

2 : R → R, cosh(x) := ex+e−x

2 : R → [1,∞],

cosh(x) := sinh(x)
cosh(x) =

ex−e−x

ex+e−x : R → [−1, 1]

1. cos(x) = cos(−x) and sin(−x) = − sin(x)

2. cos(π − x) = − cos(x) and sin(π − x) sin(x)

3. sin(x+ w) = sin(x) cos(w) + cos(x) sin(w)

4. cos(x+ w) = cos(x) cos(w)− sin(x) sin(w)

5. cos(x)2 + sin(x)2 = 1

6. sin(2x) = 2 sin(x) cos(x)

7. cos(2x) = cos(x)2 − sin(x)2

Further derivatives

F (x) f(x)

1
a ln |ax+ b| 1

ax+b
ax
c − ad−bc

c2 ln |cx+ d| a(cx+d)−c(ax+b)
(cx+d)2

x
2 f(x) +

a2

2 ln |x+ f(x)|
√
a2 + x2

x
2 f(x)−

a2

2 arcsin
(

x
|a|

) √
a2 − x2

x
2 f(x)−

a2

2 ln |x+ f(x)|
√
x2 − a2

ln(x+
√
x2 ± a2) 1√

x2±a2

arcsin
(

x
|a|

)
1√

x2−a2

1
a arctan

(
x
|a|

)
1

a2−x2

F (x) f(x)

− 1
a cos(ax+ b) sin(ax+ b)
1
a sin(ax+ b) cos(ax+ b)

xx xx · (1 + ln |x|)
(xx)x (xx)x · (x+ 2x ln |x|)
x(xx) x(xx) · (xx−1 + ln |x| · xx(1 + ln |x|))

1
2 (x− 1

2 sin(2x)) sin(x)2

1
2 (x+ 1

2 sin(2x)) cos(x)2
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