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1 Fields

1.1 Real numbers

T 1.1: (Lindemann) There is no equation of form 2™ + a,,_12" ! + ...+ ag = 0 with a; € Q such that x = 7 is a solution

C 1.8: (Archimedic Principle) Let x € R with > 0 and y € R. Then exists n € N with y <n -z

Max, min, absolute value Definition 1.10

Let 2,y € R. Then:

(i) max{z,y} = {

y ify<z (#ii) The absolute value of
x €R: |z| =maxx, —x

¢ ifysa (i) min{x,y} = {

y ifx<y z ifx<y

Absolute value properties

(i) |z| =0 Vz e R (i) oyl = |z|ly| Vz,y e R (iii) o +y| <|z] + |y] (iv) |z +yl = |lz] = [yl]

T 1.12: (Young’s Inequality) Ve > 0, Vz,y € R we have: 2|xy| < ex? + éyz

Definition 1.13

Bounds

(i) ¢ € R upper bound of A if Va € A: a < ¢. A bounded from above if upper bound for A exists
(i) c € R lower bound of A if Va € A:a < c. A bounded from below if lower bound for A exists
(11i) Element m € R maximum of A if m € A and m upper bound of A

(iv) Element m € R minimum of A if m € A and m lower bound of A

Supremum & Infimum Theorem 1.16

(i) The least upper bound of a set A bounded from above is called the Supremum and given by ¢ := sup(A4). It only
exists if the set is upper bounded.

(i) The greatest lower bound of a set A bounded from below is called the Infimum and given by ¢ := inf(A). It only
exists if the set is lower bounded.

\ J
Supremum & Infimum Corollary 1.17

Let ACBCR
(1) If B is bounded from above, we have sup(A) < sup(B)  (2) If B is bounded from below, we have inf(B) < inf(A)

_J

1.3 Complex numbers

Operations: i*> = —1 (NOT i = \/—1 bc. otherwise 1 = —1). Complex number z; = a; + b;i. Addition, Subtraction (a1 £ a2) +
aiby + agby | azb; — a1b2i'
b2+ 03 w2y

(b1 £ bo)i. Multiplication (ajas — biba) + (a1be + agby)i. Division

Parts: R(a+bi) := a (Real part), J(a+bi) := b (imaginary part), |z] := va? + b? (modulus), a + bi := a — bi (complex conjugate);
Polar coordinates: a+bi (normal form), r-e*® (polar form). Transformation polar — normal: 7-cos(¢)+7r-sin(¢)i. Transformation

i arcsin( b
normal — polar: |z| - " (=D,

Fundamental Theorem of Algebra Theorem 1.18

Let n > 1,n € N and let

P(2)=2"+an12" ' +...4+ay, a;€C
Then there exist z1,..., 2, € C such that
Pz)=(z—2z1)(z —22)...(2 — 2zp)

The set {z1,...,2,} and the multiplicity of the zeros z; are hereby uniquely determined
\ J

Surjectivity Given a function f: X — Y it is surjective, iff Vy € Y, 3z € X : f(z) = y (continuous function)

Injectivity 21 # 22 = f(z1) # f(22)



2 Sequences And Series

2.1 Limits

D 2.5: A sequence (ap)n>1 is converging if 31 € R s.t. Ve > 0 the set {n € N* : a,, €]l —¢,l + €[} is finite. Every convergent
sequence is bounded. L 2.7: (ay,)n>1 converges to [ = lim,,_,o ay, < Ve >0 IN > 1 such that |a, — | <e Vn > N

T 2.9: (an)n>1 and (b, )n>1 converging, a = lim,,_,o0 Gy, b = lim,,_, o b,. Then:

e (1) (an + bp)n>1 converging and lim,,_,oc(an + b,) = e (3) If additionally b, # 0 ¥Yn > 1 and b # 0, then
a+ b; (an + by),,~; converging and lim,, o0 (an +by,) = a+b;
e (2) (an - by) converging and lim, o (ay - by) = a - b e (4) If 3K > 1 with a, <b, Vn > K = a <b

2.2 Weierstrass Theorem
D 2.1: (a,,)n>1 monotonically increasing (decreasing) if a,, < ant1 (an, > apy1) Vo >1

T 2.2: (Weierstrass) (an)n>1 monotonically increasing (decreasing) and bounded from above (below) converges to lim,,_, o a, =

sup{a, : n > 1} (lim,_ o a, = inf{a, : n > 1}), called supremum and infimum respectively Ex 2.7: lim, (1 + %)n =e

L 2.8: (Bernoulli Inequality) (1+ )" > 1+n-2 Yne N,z > —1

2.3 Limit Superior and limit inferior

We define for (a,)n>1 two monotone sequences b, = inf{ay : £ > n} and ¢, = sup{ar : k¥ > n}, then b, < b,y1 ¥n > 1 and
Cnt1 < ¢, Vn > 1, our series are bounded and converge and we have lim inf,,_,~ ay, := lim,_,~ b, and limsup,,_, ., an = lim, o0 Cp-
We also have liminf,,_,~ a,, < limsup,,_,., @n.

2.4 Cauchy-Criteria (Convergence Tests)

L 2.1: (ap)n>1 converges if and only if it is bounded and liminf,, o an = limsup,,_, . an
T 2.2: (Cauchy-Criteria) (ap)n>1 converging < Ve >0 3IN > 1 such that |a, — am| <e Yn,m > N

2.5 Bolzano-Weierstrass Theorem
D 2.1: (Closed interval) Subset I C R of form as seen below, with length £(I) =b— a (for (1)) or L(I) = 4o0:
(1) [a,b]; a<b; a,beR (2) [a,+0]; a€R (8) | —o0,a]; a€eR (4) ] — 00, +o0[=R
An interval I is closed < for every converging sequence of elements of I the limit is also in [
T 2.6: (Cauchy-Cantor) Let Iy O ... 2 I, D I,41 2 ... a sequence of closed intervals with £(I;) < +o00. Then ﬂn>1 L, #0. If
additionally lim,_,~ £(I,) = 0, then the set contains exactly one point. T 2.7: R is not countable

D 2.8: (Subsequence of (an)n>1) (bn)n>1 Where b, = ay(ny and I(n) <I(n+1) Vn>1

T 2.9: (Bolzano-Weierstrass) Every bounded sequence has a convergent subsequence. Also: liminfa, < lim b, <limsupa,

n—oo n—oo n—o00

2.6 Sequences in other spaces than just real numbers

D 2.1: Sequences in R? and C are noted the same as in R
D 2.2 (a,,)n>1 in R? is converging if 3a € R? such that Ve > 0 3N > 1 with ||a, —a|| <e ¥n > N
T 2.3: Let b = (by,...,b,) (coordinates of b, since b is a vector). Then lim, o0 @, = b < lim,, 0 apn; =b; V1< j<d

T 2.7: (an)n>1 converges < (an)n,>1 is a Cauchy-Sequence; Every bounded sequence has a converging subsequence.

2.7 Series
D 2.1: (Convergence of a series) EZO 1 ak converges if (Sp)n>1 (sequence of partial sums) converges, i.e. E;O 1 ak = lim,, o0 Sy,
Ex 2.2: (Geometric Series) Converges with limit =, and s,, = a; - 17": Ex 2.3: (Harmonic Series) Y - | + diverges

T 2.4: Let > 1o ap and Y oo be be converging, o € C. Then:

1. i (ar + bg) converging and Z ar + by) = (Z ak> + <§: bk>
k=1 k=1

k=1

= .
2. Z(a - ag) converging and (a-ag)=a- <Z ak>
k=1

k=1




T 2.5: (Cauchy-Criteria) A series Y p- ; ay is converging < Ve >0 IN > 1 with |>°," ag] <e Ym>n> N
T 2.6: > -, a with ap > 0 Vk € N* converges < (S,,)n>1, 50 = Y1 @k is bounded from above
C 2.7: (Comparison theorem) Y ;- aj and >, ar with 0 < aj, < by Vk > K (where K > 1), then:

> e by, converging = > 77 | aj, converging Yoo, ak diverging = > - | by, diverging

D 2.9: (Absolute convergence) A series for which >~ ; |a| converges. Using the Cauchy-Criteria we get:
T 2.10: A series converging absolutely is also convergent and |y po ; ar| < D22 |ak]

o8} 1

T 2.12: (Leibniz) Let (ap)n>1 monotonically decreasing with a,, > 0 Vn > 1 and lim,,_,o a, = 0. Then S := Z?:l(—l)k‘“lak
converges and a; —as < 5 < a4y
Usage To show convergence, prove that (a),>1 is monotonically decreasing, a, > 0 and that the limit is 0

D 2.15: (Reordering) A series Y~ aj, for a )~ | ay if there is a bijection ¢ such that a), = ag(,)

T 2.17: (Dirichlet) If Y - | aj has absolute convergence, every reordering of the series converges to the same limit.

T 2.18: (Ratio test) Series s with a, # 0 Vn > 1, s has absolute convergence if limsup [t < 1. If lim infM > 1it

n— o0 |an| n—00 |an|
diverges. If any of the two limits are 1, the test was inconclusive

T 2.19: (Root test) If limsup {/|a,| < 1 the series converges. If the limit is larger than one, it diverges
n—oo

C 2.20: (Radius of convergence) A power series of form Y ;- ¢,z has absolute convergence for all |z| < p and diverges for all

ifl=0
|z| > p. Let I =limsup,,_,., ¥/|ck|, then p = {TOO ?“ 0 The radius of convergence is then given by p if p # co
N 1 >

D 2.23: For a double series 37 aij, Y_p—g bi is a linear arrangement if there exists a bijection o s.t. by = a, k)

m m o0 o0
T 2.24: (Cauchy) Assume 3B > 0 s.t. ZZ la;j| < B ¥Ym > 0. Then: S; := Zaij Vi > 0 and U; := Zaij j>0
=0 j=0 3=0 i=0

oo oo oo o0
have absolute convergence, as well as Z S; and Z U; and we have: Z Si= Z U;.

1=0 J=0 i=0 §=0
Every linear double series has absolute convergence with same limit.

D 2.25: (Cauchy-Product) Z Z an—;b; | = aobo + (apbi + a1bo) + (agbs + a1b1 + azbo) + ... for two series Z a;, Z b;
n=0 \j=0 i=0 =0
T 2.27: If two series have absolute convergence, their Cauchy-Product converges and it is the terms of the two series expanded.
T 2.28: Let f,, be a sequence. We assume that:
o f(j) :=lim, o0 fn(j) exists Vj € N o N,
G) oo fnld) Then Y f(j) = lim > fu(j)
o Jgst. [fu(h) < g(j) Vi,n>0and 3272, g(j) converges j=0 j=0

C 2.29: For every z € C we have lim (1 + E) = exp(z) and it converges, where exp(z) := 1+ z + 22—7 + g—? +...
" . .

n—oo



3 Continuous Functions

3.1 Real-Valued functions

D 3.1: (Bounds) Let f € RP where R” is the set of all functions f : D — R, which is a vector space
e fis bounded from above if f(D) C R is bounded from above.
o fis bounded from below if f(D) C R is bounded from below.
e fis bounded if f(D) C R is bounded.

D 3.2: (Monotonicity) If D C R we have the following terms for monotonicity:
e monotonically increasing if Ve,y € D x <y = f(z) < f(y)
strictly monotonically increasing if Vr,y € D x <y = f(z) < f(y)
monotonically decreasing if Vx,y € D x <y = f(z) > f(y)
strictly monotonically decreasing if Ve,y € D xz <y = f(z) > f(y)
monotone if f is monotonically increasing or monotonically decreasing
strictly monotone if f is strictly monotonically increasing or strictly monotonically decreasing

3.2 Continuity

Intuition: we can draw a continuous function without lifting the pen.

D 3.1: (Continuity of f in xo) If for every € > 0 exists a § s.t. |z — zo| < § = |f(x) — f(zo)| < ¢ D.3.2¢ (Continuity) f

continuous if continuous in all points of D [T 3.4: f is continuous in xg <= for (an)p>1 limy oo an = 20 = f(an) = f(z0)

C 3.5: Let f, g continuous in xg, then f+ g, A- f, f - g, f o g are continuous in zo and if g(xg) # 0, 5 is continuous in xy for

L:Dn{zeD:g(z)#0} >R

D 3.6: (Polynomial function) P(x) = apz™ + ... + ag, if a, # 0, deg(P) = n (degree of P) (€ 8.7: They are continuous on all
of R [C 3.8: P,Q pol. func. on R with Q # 0, where z1,...,z,, are zeros of Q. Then: % :R\{z1,...,2m} — R is continuous

3.3 Intermediate value theorem

T 3.1: Let I C R be an interval, f : I — R a continuous function and a,b € I. For each ¢ between f(a) and f(b) exists a z
between a and b with f(z) = ¢ (€ 3.2: Let P be a polynomial with deg(P) = n, n odd. Then, P has at least one zero in R

3.4 Min-Max-Theorem
D 3.2:] (Compact interval) if interval I is of form I = [a,b], a < b L 8.3: f,g continuous in zg. Then: |f|, max(f,g) and

min(f, g) are continuous in xy (min(f, ¢) is the minimum of the two functions at each =) L 3.4: (x,),>1 converging series in R

with lim z, € Rand a <b. If {z,, : n > 1} C [a,b] we have lim z,, € [a,b] T 3.5: Let f continuous on compact interval I. Then
n—oo n—roo

Ju € I and Jv € T with f(u) < f(z) < f(v) Vz € I. f is bounded.

3.5 Inverse function theorem

T 3.1: Let D1,D3 CR, f: Dy — Dy, g: Dy = R, zpg € Dy. If f cont. in xg, g in f(zo) then fog: Dy — R is continuous in zg
C 3.2: If in theorem 3.5.1 f continuous on Dy and g on Ds, then go f is continuous on Dy

T 3.3: (Inverse function theorem) Let f : I — R continuous, strictly monotone and let I C R be an interval. Then: J := f(I) CR
is an interval and f~!: J — I continuous and strictly monotone.

3.6 Real-Valued exponential function

x .n

z
The exponential function exp : C — C is usually given by a power series converging on all C: exp(z) := E — here for z € R.
n!
n=0
exp is bijective, continuous, strictly monotonically increasing and smooth. exp~!(z) = In(z)

T 3.1: exp : R —]0, +o0[ is strictly monotonically increasing, continuous and surjective (€ 83.2: exp(x) > 0 Vo € R
C 3.3: exp(z) > exp(y) Vz > y (€ B.4:exp(x) > 1+ 2 Ve € R [C 8.5: In :]0, +o0o[— R is strictly monotonically increasing,
continuous and bijective. We have In(a - b) = In(a) + In(b) Va,b €]0,+oo|. It is the inverse function of exp (C 3.6:

1. For a > 0 ]0,4+o00[ — ]0,400[ x> z? is a continuous, strictly monotonically increasing bijection.
2. For a <0 ]0,400[ — ]0,4+00[ = — 2 is a continuous strictly monotonically decreasing bijection.

3. In(z*) = aln(z) Va €R, Vx>0 4. 2% g0 =29t Yo, b e R, Yz >0 5. (2%)® = 2% Va,be R, Vz >0




3.7 Convergence of sequences of functions

D 3.1: (Pointwise convergence) (f,)n>1 converges pointwise towards a function f: D — Rifforall z € D f(x) = lim,— 00 fn(2)
D 38.3: (Weierstrass) Sequence f,, converges uniformly in D to fif Ve >0 IN > 1st. Vn > N, Ve e D :|fp(x) — f(z)| <e

T 3.4: f,, sequence of (in D) continuous functions converging to f uniformly in D. Then, f is continuous (in D)

D 3.5: (Uniform convergence of (fu)n>1)) fn if Ve € D f(z) :=lim, o0 frn(x) exists and (f,)n>1 converges uniformly to f

C 3.6: f,, converges uniformly in D <= Ve >0 IN > 1 such that Vn,m > N, Ve € D |fu.(z) — fm(2)| < e

C 3.7: If f, is a uniformly converging sequence of functions, then f(x) := lim,,_ fn(x) is continuous

D 3.8: Z fr(z) converges uniformly if S, (x) := Z fr(z) does [T 3.9: Assume |fn(2)| < ¢, Vz € D and that Z Cp, CONVETges.
k=0 k=0 n=0

Then Zf;‘:(g ) converges uniformly in D and f (z) :=>".° falz) is continuous in D

D 3.10: (Radius of convergence) See C 2.7.19 [T 3.11: A power series converges uniformly on | — r,r[ where 0 <r < p

3.8 Trigonometric Functions

T 3.1: sin : R — R and cos : R — R are continuous functions [T 3.2:

1. expiz = cos(z) +isin(z) Vz € C 4. sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
2. cos(z) = cos(—z) and sin(—z) = —sin(z) Vz € C cos(z + w) = cos(z) cos(w) — sin(z) sin(w)
iz _ ,—1z 12z 12 2 8 2 _
3. sin(z) = 2.6 . cos(z) = e -;—6 5. cos(z)* +sin(z)* =1 z € C
i

C 3.3: sin(22) = 2sin(z) cos(z) and cos(2z) = cos(z)? — sin(z)?

3.9 Pie (delicious)

T 3.1: The sine function has at least one zero on ]0,+oo[ and 7 := inf{t > 0 : sin(¢t) = 0}. Then sin(r) = 0, © €]2,4];
vz €]0, 7[: sin(z) > 0 and eF =i (€ 8.2: 2 > sin(z) >z — ?,}—T Y0 <0<+6 C 3.8

1. ™" =—1, " =1 3. sin(z + 7) = —sin(z), sin(x + 27) =sin(z) Yz € R

2. sin(z+ %), cos (z+ %) = —sin(z) Vo €R 4. cos(z + m) = —cos(z), cos(x + 2m) = cos(x) Vz € R

5. Zeros of sine = {k -7 : k € Z} 6. Zeros of cosine = {§ - k-m:k € Z}
sin(z) > 0 Va €]2km, (2k + )n[, k € Z sin(z) > cos(z) >0 Vo €| = 5 +2km, -5 + 2k + 1)n[, k€ Z
0 Vx €](2k + 1), (2k + 2)n[, k€ Z cos(xz) >0 Vo €]-F+(2k+1)m, - T+ (2k+2)7[, k€ Z

3.10 Limits of functions

D 3.1: (Cluster point)DE: “Haufungspunkt” zo € R of D if V6 > 0 (Jzg — §,z0 + 6[\{zo}) N D # 0
D 3.3: A € R is the limit of f(x) for  — z¢ denoted lim,_,,, f(z) = A, where z is a cluster point, if:
Ve 36 > 0s.t. Yo € DN (Jeg — 6,0 + S[\{zo}) : | f(z) — Al < e

T 3.7: Let D,E C R, z, a cluster point of D and f : D — E a function. Assume that yo := lim,_,,, exists and yo € E. If
g : E — R is continuous in yg, we have lim,_,,, g(f(z)) = g(yo)

Used when we have functions with poles, we approach them from both sides to evaluate said pole. Differently from at Kanti, we
note it * — z instead of = T ¢




4 Differentiable Functions

4.1 Differentiation

exists.

D 4.1: (Differentiability) f is differentiable in zg if f'(z9) = lim @) = J(z0) = lim f(@o+h) = flwo)
z—=zo T — X h—0 h

T 4.3: xq cluster point of D: f is differentiable in 29 <= 3¢ € R and r : D — R with (if it applies ¢ = f'(x¢) is unique):
f(z) = f(xo) + c(xz — zo) + r(z)(x — x) as well as r(zp) = 0 and r is continuous in xg
T 4.4: f differentiable in 29 < 3¢ : D — R continuous in x = and f(z) = f(zo) + ¢(x)(x — x9) Vo € D. Then ¢(zo) = f'(zo)

C 4.5: x¢ € D cluster point of D. If f differentiable in xg, f continuous in xy D 4.7: f is differentiable on all D if for each
cluster point xg it is differentiable in zq

T 4.10: (Basic Differentiation rules) Let f, g be functions differentiable in xq

o (£ +9)(x0) = f'(20) +g'(20) o Wl FY (o — £@0)g(@0) = f(@o)g/(x0)
e (/9)(x0) = F'(w)g(wa) + Fw0)g'(zo) faten) #0. (1) (a0 a(zo)?

T 4.12: (Chain rule) xg € D cluster point, f : D — E differentiable in x¢ s.t. yo := f(xg) € E cluster point of E and let
g : E — R differentiable in yo. Then go f: D — R differentiable in z¢ and (g o f) (z0) = ¢'(f(x0)) - f'(x0)
C 4.13: Let f : D — E be a bijective function, differentiable in x( (cluster point) and f’(x) # 0 as well as f~! continuous in

yo = f(z0). Then yo cluster point of E, f~1 differentiable in yo and (f~1) (yo) =

1
f'(@0)
4.2 First derivative: Important Theorems

D 4.1: (1) f has maximum at xo if 30 > 0 s.t. f(z) < f(xo) Va €]xg — d,20 + [ N D (2) f has minimum at z if 3§ > 0 s.t.
f(x) > f(zo) Yz €]zg — §,20 + 0] N D (3) f has extrema in x if it is either max or min

T 4.2: Assume f differentiable in zy. From the following we have that if f/(xz) = 0, there is an extrema at

1. If f'(zo) > 0 30 > 0s.t. f(z) > flxg) Yo €lxg, zo+ 9] 2. If f'(zg) <0 30 >0s.t. f(z) < f(xo) YV €xg, x0+I]
and f(z) < f(xg) Vx €]axg — I, zo[ and f(x) > f(xg) Va €lxg — 0, xo|

T 4.3: Let f : [a,b] — R continuous and differentiable in Ja, b[. If f(a) = f(b), 3¢ €la, b] with f'(£) =
T 4.4: Let f as above, then 3¢ €]a, b s.t. f(b) — f(a) = f'(§)(b— a) (€ 4.5: Let f, g as above (I = [a,b]), then:

1. f'(§) =0 V¢ €]a,b] = f constant 5. f'(§) <0 V€ €]a,b] = f mon. decreasing on [
2. f'(&§) = g (f) V¢ €la,b] = Je € R with f(z) = 6. f'(€) <0 V¢ €]a,b] = f strictly mon. dec. on I
g(x) + ¢ Vz € [a, b 7.1 3IM > 0 s.t. |f'(€)| < M V¢ €]a,b], then Vq,29 €
3. f'(§) >0 V¢ €]a,b] = f mon. increasing on [a,0] |f(z1) — f(z2)] < M|z — 22|
4. (&) > 0 V¢ €la,b] = f strictly mon. inc. on I

J;I(‘b;l-l(;;(f),gaéff??g;ieﬁned previously. Then ¢'(€)(f(b) — f(a)) = f'(€)(g(b) — g(a)). If ¢'(x) # 0 z €la,b], g(a) # g(b) and

- a 5 . 5 W. ’ . _ . _

() — g(a) ,— 76 T 4.11: (L Ho;tm;al s rule);,(g)as before, with ¢'(z) # 0 Vz €la,b[. If a:liril* f(z) =0, 115217 g(x) =0 and
2) _ x

A= lim exists, we have lim ——= = lim
a—b- g'(x) a—b- g(x)  a—b- ¢'(2)
A (x)+ (1= X)f(y). Strictly convex if < instead of < in all occurences (T 4.17: f (as usual) (strictly) convex <= f’ (strictly)

monotonically increasing. (C 4.18: If f” exists, then f (strictly) convex if f” > 0 (or f” > 0) on ]a,d]

D 4.14: f convex on [ if Ve <yeTand A€ [0,1] f(Az+ (1= N)y) <

4.3 Higher derivatives

Higher derivatives Definition 4.1

1. For n > 2, f differentiable n times in D if f(»~1 is differentiable in D. £ := (f(»=D)" n-th derivative of f
2. f is n-times continuously differentiable in D if f(") exists and is continuous in D
3. f is called smooth (de: glatt) in D if Vn > 1 f(*) exists.

T 4.3: (1) (f+9)™ = f™ + g™ (2) (f- 9™ =37, (% )f(k) (n=k) (binomial expansion), for f, g differentiable n times
T 4.5: f,g as above; If g(z) # 0 Va € D, then f differentiable n-times in D T 4.6: Let £, D C R for which each point is a
g

cluster point and f : D — E and g : E — D, both differentiable n times. Then (go )™ (x) = S_1_, Anx(z)(g®) o f)(z) where
A, 1 is a polynomial in the functions f, f@, L fltl=k)



4.4 Power series and Taylor approximation

T 4.1: Assume that (f,)n>1 (for f,, and f], continuously differentiable) and (f},)n>1 converge uniformly on la, b[ for f :]a,b[— R
with f:= lim f, and p:= lim f. Then f is continuously differentiable and f’ = p
n— oo n— oo

T 4.2: Power series Z cpx® with p > 0, f(z Z cx(z — x0)* differentiable on |z — p,zo + p[ and f'(z Z kep(z — zo)F 1
k=0 k=0

, >° k! , ()
C 4.3: Asin 4.4.1, f smooth on conv. interval and f(J)(x) chm(x — 20)* 7. Specifically, cj = f%('ﬂfo)
! —7) J:

k=j

~ f¥)(a) FrtD(e)
T 4.5: f continuous, If(" 1), For each a < x < b 3¢ €]a, 2] with f(z) Z T(x —a)f +— (2 —a)"T! [C 4.6: (Taylor

(n+1)!
k=0
Approximation) Same as above, but f : [¢,d] — R instead of f : [a,b] = R and ¢ < a < d and £ between z and a.

C 4.7: a < xo < b and f as before, assume that f'(z¢) = f®(29) = ... = f™(x) = 0. Then:
1. If n even and z¢ local extrema, f("+1)(2¢) =0 3. If n odd and f("*1)(xq) < 0, x strict local maximum

2. If n odd and £+ (xq) > 0, 20 strict local minimum

C 4.8: f differentiable twice and a < x¢ < b, assume f'(z9) =0
1. f®(z0) > 0, x¢ strict local minimum 2. f®(xg) < 0, zg strict local maximum

4.5 Exercise Help

n . _ n(n+l) 2 _ n(n+1)(2n+1)
i=1t= 2 Zz—l = 6
S8 o n2(nt+1)2 o 1 _ z2
i=1v = 1 i=1 572 — 6
o oo i l—zi+1
=1 n(n+1) =1 DA
Common limits Common Taylor Polynomials
2 3 4
. 1 . 1  _ T T x 5
limg 00 2 =0 limg 001+ 3 =1 e—1+z+?+§+z+0(z)
3 5
limg 500 €¥ = 00 limg 5 oo e® =0 sinx:z—z—'+z—'+(’)(x7)
3 5
limg yoo e =0 lim, ,_ e ¥ =00 sinh(z) = = + z_l + 15—' +0(z")
. * . 2 4 6
limg o0 S = 00 limy oo ze” =0 cos(z) = 1 — x— T Z—, - m— L0
. 4
limg o0 In(x) = 0o limz 0 ln(z) = —o0 cosh(z) = 1 + % + x_ + + o)
. 1 . 1 z®  22°
limy oo (14+2)z =1 limy ,o(l+2z)z =e tan(a) = @ + =
lim (1+ 1) =1 lim (1+ 1) =1 a? | 2a°
T—> 00 z - T—> 00 z - tanh(z) =z — 5 s
i 9T =0, ¥0< g<1 | i =1 @2 ot ot
Mg oo T q° =0, Sq< Mg—oo NN = log(l+z)=$—?+? I+O(I)
: 1\z __ : 1\ _ 1 ¢ — 1 (o — 1) (. — 2
limg 400 (1+ 1) =e limy ,00 (1-1)" =1 (14+2)" =1+az+ Q(C;l ) 2 n a(a 3)’(0/ ) 3 + 0
. & k . i 2 3
limg 400 (1+ 5)™* =™ limg o 5% =1 VITE=1+43~ 415 —0G"
. . sw—1
limg, 0 Cos(m) =1 lim, ,o 22— =0
limg 0 1%% = -1 lim, ,oxlogz =0
li l—cosx __ 1 i e —1 1
Mg—0 ~ 35 = 3 Mz—0 % =
limg 0 gotans = 1 limg_, o0 arctanz = 5
xT xT
. - . —1
limg 0o (ch_—k) =7k limg 0 “5— =1
. T _ . axr _
limg .o *— 1 — In(a) Va > 0 lim, 0 S I —g
. 1 1 . 1
hmx%O % =1 hmw—rl ;1(_z1) =
i 221 S
limg oo Yz =1 limg o0 22 =0
lim _ tanx = +o0 lim + tanax = —o0
= Mo x> Ty
limg o0 S‘% =0 lim,_ 4+ zlnz =0




5 Integrals

5.1 Definition and integrability
D 5.1: (Partition) finite subset P C I where I = [a,b] and {a,b} C P

Lower sum: s(f, P) := Z fidiy fi= inf  f(x), Upper sum: S(f,P) := Z fidiy, fi= sup  f(x), §; sub-interval
i=1 Ti—1 STy i=1 i 1<x<x;
L 5.2: Let P’ be a specification of P, then s(f, P) < s(f,P") < S(f,P’) < S(f, P); for arbitrary Py, P, s(f, P1) < S(f, P2)
b
D 5.3: f bounded is integrable if s(f) = S(f) and the integral is / f(z) da

T 5.4: f bounded, integrable <= Ve > 0 3P € P(I) with S(f, P) — s(f, P) < & where P(I) is the set of all partitions of T
T 5.9: f integrable <= Ve >0 30 > 0 s.t. VP € Ps(I),S(f, P) — s(f, P) < &, where Ps(I) is set of P for which max 0; <46

C 5.10: f integrable with A := f; f(z) de <= Ve >0 30 > 0s.t. VP € P(I) with §(P) < ¢ and &1,...,&, with & € [xi — 1, 2]

and P = {zg,...,z,}, ‘A - Zf(fl)(gcl — 1)
i=1

<e€

5.2 Integrable functions
T 5.1: f, g bounded, integrable and A € R. Then f+ g, A- f, f-g, |f], max(f,g), min(f, g) and g(if lg(x)| > B8 >0 Vz € [a,b]
are all integrable (C 5.3: Let P, @ be polynomials and @ has no zeros on [a,b]. Then: [a,b] = R and z — % integrable

D 5.4: (uniform continuity) if Ve >0 30 >0 Ve,y € D: |z —y| < d = |f(z) — f(y)| < ¢ [T 5.6: f continuous on compact
interval I = [a,b] = f is uniformly continuous on I [T 5.7: f continuous = f integrable /T 5.8: f monotone = f integrable
T 5.10: I C R compact interval with I = [a,b] and f1, fo bounded, integrable and A1, A2 € R.

b b b
Then: / (>\1f1(l‘) + /\2 + fg(x)) dx = )\1/ f1($) dx + )\2/ f2($) dx

5.3 Inequalities and Intermediate Value Theorem

b b
T 5.1: f,g bounded, integrable and f(z) < g(z)Vz € [a,b], then / flz) dz < / g(z) dz € 5.2:if f bounded, integrable,

/abf(x) dz a a

T 5.4: (Intermediate Value Theorem) f continuous. Then 3¢ € [a,b] s.t. / dz = f(&)(b —a) T 5.6: Let f continuous, g

a

< f; |f(x)| dz T 5.8: Let f, g bounded, integrable, then < \/ff f2(z) dz - \/f: g2 (x) dz

[ e as
b

b b
bounded and integrable with g(x) > 0 Vx € [a,b]. Then 3¢ € [a, ] s.t. / f@)g(x) dz = f(f)/ g(x) d

5.4 Fundamental theorem of Calculus

First Fundamental Theorem of Calculus m

Let a < b and f : [a,b] — R continuous. The function

F(x):/wf(t)dt, a<z<b

is differentiable in [a,b] and F'(z) = f(z) Yz € [a,b]

. J
Proof: Split the integral: [ f(¢) dt + f;o ft)ydt = [T f(t) dt, so F(z) — F(xg) = fjo f(t) dt. Using the Intermediate Value
Theorem, we get f;o f(t) dt = f(&§)(x — o) and for x # xo we have F@)=Flzo) _ f(&) and since £ is between xg and = and since f

T—Xo

continuous, lim,_,, %ﬂ%) = f(xo) O

D 5.2: (Anti-derivative) F for f if F is differentiable in [a,b] and F' = f in [a,}]

Second Fundamental Theorem of Calculus

f asin 5.4.1. Then there exists an anti-derivative F' of f that is uniquely determined bar the constant of integration and

b
/fmwuzﬂ@—F@




Proof: Existence of F' given by 5.4.1. If F} and F, are anti-derivatives of f, then F| — F} = f — f =0, i.e. (F} —F) =0.
From 4.2.5 (1) we have that Fy — Fj is constant. We have F(z) = C' + [ f(t) dt, where C' is an arbitrary constant. Especially,

— O+ [” f(t) dt, F(a) = C and thus F(b) — F(a) :C+fbft dt —C = [V () dt

b
T 5.5: (Integration by parts) / f(x)g (z) dz = / f(z ) dz. Be wary of cycles

b #((0))
T 5.6: (Integration by substitution) ¢ continuous and differentiable. Then / f(o(t)g'(t) dt = / f(x) dz

a #(a)
To use the above, in a function choose the inner function appropriately, differentiate it, substitute it back to get a more easily
integrable function. (€ 5.9: I C R and f : I — R continuous

1. Let a,b,c € R s.t. the closed interval with endpoints 2. Let a,b,c € R, ¢ # 0 s.t. the closed interval with end-
a4+ ¢, b+ ¢ is contained in I. Then points ac, b is contained in I. Then
b+c b 1 be b
@) dz = / ft+o) dt L ) de = / Flet) at
a+c a ac a

5.5 Integration of converging series

T 5.1: Let f, : [a,b] — R be a sequence of bounded, integrable functions converging uniformly to f. Then f bounded, integrable

and lim, o0 ff fo(z) do = ff f(z) dz € 5.2: f, s.t. the series converges. Then > - f fu(z) do = fa (Yoo falz)) d

C 5.3: f(x) = Y, zxa™ with p > 0. Then VO < r < p, f integrable on [—r,r] and Va €] — p, p[, [y f(t) dt = Y07 -2 x"‘H

5.6 FEuler-McLaurin summation

D 5.1:'Vk > 0, the k-th Bernoulli-Polynomial By(z) = k!Py(x), where P, = P,_; Vk > 1 and fol Py(x)de = 0 Vk > 1
D 5.2:/Let By = 1. Vk > 2 By, is given recursively by Zf:_ol (’;)Bi =0 [T 5.3: (McLaurin Series) By(z) = ZZ 0 ( )Bizh~i

—~ B for 0 < 1
T 5.5: f k times continuously differentiable, k& > 1. Then for By (z) = k(@) oriswTs that
Bk(:rfn) forn <z <n+1wheren>1
1 Fork=1: Y0, f(i) = [ f(2) dz + 1(f(n) — £(0) + [ By(x)f'(x) dz  below: Ry = SV [ By(a) ) (x) da

EDB5 (61 () 61 (0)) 4+ By, By, = Z /31 )F®) () de

(—1)(k—1)

2. Fork:ZQ:Zf / flx dx—i— —I—
i=1

QMX

5.7 Stirling’s Formula
T 5.4:n! = %«exp (nJng(n)), IRs(n)| <33 L Yn>1 L52:¥m>n+1>1: |Ry(m,n) <33 (L — L)

5.8 Improper Integrals
D 5.1: f bounded and integrable on [a,b]. If hm / f(z) da exists, we denote it f f(z) da and call f integrable on [a,4o00[

L 5.3: f : [a,00[— R bounded and integrable on [a,b]Vb > 0. If |f(z) < g(z) Vx > a and g(z) integrable on [a,o0[, then f is
integrable on [a,00[. If 0 < g(z) < f(z) and [~ g(z) dz diverges, so does [ f(z) dz T 5.5z f : [1,00[— [0, c0[ monotonically
decreasing. Yo", f(n) converges < [~ f(z) dx converges D 5.9:If f :]a,b] is bounded and integrable on [a + £,b],e > 0, but
not necessarily on |a, b, then f is integrable if hmgﬁm f .. f(x) dz exists, then called fj f(z) dz

D 5.12: (Gamma function) For s > 0 we define I'(s fo e x5l da
T 5.13: (1) I'(s) fulfills T'(1) = 1, I'(s + 1) = sI'(s) Vs >0and T(Az + (1 = N)y) <T(2)(y)' = Va,y >0, VO<A<1
1nT
(2) T'(s) sole function ]0,00[ — ]0,00[ that fulfills the above conditions. Additionally: I'(x) = lim al Yz > 0

n—oo x(x +1)...(z+n)
T 5.14: Let p,q > 1 with % + % =1, for all f,g: [a,b] = R continuous, we have ff If(2)g(z)| dz < || fllpllgllq

5.9 Partial fraction decomposition

Used for rational polynomial functlons Start by splitting the fraction into parts (usually factorized, so find zeros). Split denominator
into the found parts, e.g. %5 + +2, then expand to the same denominator on all fractions. Then p(x) (the numerator) of the
original fraction has to equal the new fraction’s numerator, so use SLE to find coefficients. Get the numerator into the form of a
polynomial, so e.g. (a+b) -z + (2a — 4b), then SLE is

20— 4

ca=2p=t tional polynomial
a = — = = Or our rationa olynomial ——m
3777 3 poty 228

We can then insert our coefficients into the split fraction (here -2 ...) and we can integrate normally



6 Table of derivatives and Antiderivatives

Antiderivative Function Derivative Logarithms
1 - S (Change of base) log,(z) = }ﬁ(g (Powers) log,(z¥) = ylog,(x)
n+1 ) ) (Div, Mul) log,(x - (+)y) = log,(x) + (=) log,(y)
In |z| =g —xt=—— log,(1) =0 Ya €N
x x
% z3 N 22 5 1 Integration by parts Should we get unavoidable cycle, where
. L ' \1/5 we have to integrate the same thing again, we may simply add
] UER Ve =axzn ,%93;71 the integral to both sides, and we thus have 2 times the integral
on the left side and then finish the integration by parts on the
e® e e right hand side and in the end divide by the factor up front to
exp() exp(z) exp(z) get the result.
a'(yi_i_l)(aerb)”ﬂLl (azx + b)™ n - (ax +b) ) )
z-(In|z| — 1) In(z) % — 1 Inverse hyperbolic functions
1
() a® a® a” - 1n(a) e arcsinh(z) = In (z + V22 + 1)
" 1
i - (2] =1) log, [«] 7 - In(a) e arccosh(z) = In (z + V22 — 1)
— cos(x) sin(x) cos(z) e arctanh(z) = LIn (%er)
sin(z) cos(x) — sin(z) ’
1
—In | cos(z)| tan(z) cos2(z) Complement trick vazr +b—+vecr+d= ;%f%%
1
V1= 22 i -
v - aresin(z) + VI =@ arcsin(z) V1= 22 Values of trigonometric functions
1
x - arccos(z) — v 1 — 2 arccos(z) o
In(z? + 1) 11 -t ° rad sin(§) cos(§) tan(§)
x - arctan(z) — — arctan(z) o] 0° 0 0 1 1
1 o T
In | sin(z)| cot(x) — 30 6 3 ? ?
sin”(x) 45° 0T V2 V2 1
cosh(z) sinh(z) cosh(x) - 4 \% 2
sinh(z) cosh(z)  sinh(z) 60° 5 5 3 V3
In| cosh(z) tanh(2) : R
n | cosh(z anh(z —
cosh?(x) 1200 ¢ @ —1 -3
arcsinh(zx) 11:52 135° 3¢ g _g 1
1 o L V3 V3
arccosh(z) 7T 1500 °r i -3 _3
arctanh(z) 1= 180° 7 0 -1 0
Trigonometrie cot(£) = Eg tan(€) = ng 3. sin(z + w) = sin(z) cos(w) + cos(x) sin(w)
sin s
. . S 4. cos(x + w) = cos(z) cos(w) — sin(z) sin(w)
sinh(z) := &=f— : R — R, cosh(z) := “<Ef— : R — [1,00],
1 x —xT 2 P
cosh(z) := Zg;ll((i; =Sr= R—[-1,1] 5. cos(x)? + sin(x)” = 1
1. cos(z) = cos(—x) and sin(—z) = —sin(z) 6. sin(2z) = 2sin(z) cos(x)
2. cos(m — x) = — cos(z) and sin(m — z) sin(x) 7. cos(2z) = cos(z)? — sin(z)?
Further derivatives
F(x) f(x) F(z) f(x)
Ln jaz + b| #—i—b —1 cos(az + b) sin(ax + b)
ar _ ad_be | (e 4 | a(cwrd);(iggw%) Lsin(az + b) cos(ax + b)
Zf(x)+ o s Injz 4 f(z) va? + x? z” ¥+ (14 Infz])
5f(x) — “—2 arcsin ( 14 a? — z? WZT . (@)% - (z + 22 In |z])
° ( 22 | lal | S z(=") @) (2* ! +Inz| - 2°(1 + In|z])
Zf(z) — %L ln|z+ f(z) z? —a 1 1. .
2 2 Lip_ L 2
In(z + V22 £ a?) S 3 (@~ g sin(2r)) sin(e)
. o 5(x 4 5 sin(22)) cos(x)?
arcsin (m) \/ﬁ
L arctan (I%I) P
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