

1 Differential Equations

Def Differential Equation (DE)

Equation relating unknown f to derivatives $f^{(i)}$ at same x .

Def Ordinary Differential Equation (ODE)

DE s.t. $f : I \rightarrow \mathbb{R}$ is in one variable.

Def Partial Differential Equation (PDE)

DE s.t. $f : I^d \rightarrow \mathbb{R}$ is in multiple variables.

Notation $f^{(i)}$ or $y^{(i)}$ instead of $f^{(i)}(x)$ for brevity.

Def Order $\text{ord}(F) := \max_{i \geq 0} \{i \mid f^{(i)} \in F, f^{(i)} \neq 0\}$

Remark Any F s.t. $\text{ord}(F) \geq 2$ can be reduced to $\text{ord}(F') = 1$, but using functions of higher dimensions.

Solutions to ODEs

$\forall F : \mathbb{R}^2 \rightarrow \mathbb{R}$ s.t. F is cont. diff. and $x_0, y_0 \in \mathbb{R}$:

$$\exists f : I \rightarrow \mathbb{R}$$

s.t. $\forall x \in I : f'(x) = F(x, f(x))$ and $f(x_0) = y_0$

s.t. I is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

1.1 Linear Differential Equations

Def Linear Differential Equation (LDE)

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

$I \subset \mathbb{R}$ is open, $k \geq 1$, $\forall i < k : a_i : I \rightarrow \mathbb{C}$

Def Homogeneity of LDEs

Homogeneous $\iff b = 0$

Inhomogeneous $\iff b \neq 0$

Remark $D(y) := y^{(k)} + \dots + a_0y$ is a linear operation:

$$D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2)$$

$\forall z_1, z_2 \in \mathbb{C}$, f_1, f_2 k -times differentiable

Def Homogeneous Solution Space

$$\mathcal{S}(F) := \{f : I \rightarrow \mathbb{C} \mid f \text{ solves } F, f \text{ is } k\text{-times diff.}\}$$

Remark $\mathcal{S}(F)$ is the Nullspace of a lin. map: f to $D(f)$:

$$D(f) = z_1D(f_1) + z_2D(f_2) = 0$$

$$\forall z_1, z_2 \in \mathbb{C}, \quad f_1, f_2 \in \mathcal{S}$$

Solutions for complex homogeneous LDEs

F s.t. a_0, \dots, a_{k-1} continuous and complex-valued

1. \mathcal{S} is a complex vector space, $\dim(\mathcal{S}) = k$
2. \mathcal{S} is a subspace of $\{f \mid f : I \rightarrow \mathbb{C}\}$
3. $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{C}^k$ a unique sol. exists

Solutions for real homogeneous LDEs

F s.t. a_0, \dots, a_{k-1} continuous and real-valued

1. \mathcal{S} is a real vector space, $\dim(\mathcal{S}) = k$
2. \mathcal{S} is a subspace of $\{f \mid f : I \rightarrow \mathbb{R}\}$
3. $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{R}^k$ a unique sol. exists

Def Inhomogeneous Solution Space

$$\mathcal{S}_b(F) := \{f + f_0 \mid f \in \mathcal{S}(F), f_0 \text{ is a particular sol.}\}$$

Note: This is only a vector space if $b = 0$, where $\mathcal{S}_b = \mathcal{S}$.

Solutions for real inhomogeneous LDEs

F s.t. a_0, \dots, a_{k-1} continuous, $b : I \rightarrow \mathbb{C}$

1. $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{C}^k$ a unique sol. exists
2. If b, a_i are real-valued, a real-valued sol. exists.

Remark Applications of Linearity

If f_1 solves F for b_1 , and f_2 for b_2 : $f_1 + f_2$ solves $b_1 + b_2$.
Follows from: $D(f_1) + D(f_2) = b_1 + b_2$.

1.2 Linear Solutions: First Order

$$I \subset \mathbb{R}, \quad a, b : I \rightarrow \mathbb{R}$$

Form:

$$y' + ay = b$$

Approach:

1. Hom. Solution f_1 for: $y' + ay = 0$

Note that \mathcal{S} has $\dim(\mathcal{S}) = 1$, so $f_1 \neq 0$ is a Basis for \mathcal{S}

2. Part. Solution f_0 for $y' + ay = b$

Solutions: $f_0 + zf_1$ for $z \in \mathbb{C}$

Explicit Homogeneous Solution

$A(x)$ is a primitive of a , $f(x_0) = y_0$

$$f_1(x) = z \cdot \exp(-A(x))$$

$$f_1(x) = y_0 \cdot \exp(A(x_0) - A(x))$$

Variation of Constants: Treating z as $z(x)$ yields:

Explicit Inhomogeneous Solution

$A(x)$ is a primitive of a

$$f_0(x) = \underbrace{\left(\int b(x) \cdot \exp(A(x)) \right)}_{z(x)} \cdot \exp(-A(x))$$

Method Educated Guess

Usually, y has a similar form to b :

$b(x)$	Guess
$a \cdot e^{\alpha x}$	$b \cdot e^{\alpha x}$
$a \cdot \sin(\beta x)$	$c \sin(\beta x) + d \cos(\beta x)$
$b \cdot \cos(\beta x)$	$c \sin(\beta x) + d \cos(\beta x)$
$a e^{\alpha x} \cdot \sin(\beta x)$	$e^{\alpha x} (c \sin(\beta x) + d \cos(\beta x))$
$b e^{\alpha x} \cdot \cos(\beta x)$	$e^{\alpha x} (c \sin(\beta x) + d \cos(\beta x))$
$P_n(x) \cdot e^{\alpha x}$	$R_n(x) \cdot e^{\alpha x}$
$P_n(x) \cdot e^{\alpha x} \sin(\beta x)$	$e^{\alpha x} (R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x))$
$P_n(x) \cdot e^{\alpha x} \cos(\beta x)$	$e^{\alpha x} (R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x))$

Remark If α, β are roots of $P(X)$ with multiplicity j , multiply guess with a $P_j(x)$.

1.3 Linear Solutions: Constant Coefficients

Form:

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

Where $a_0, \dots, a_{k-1} \in \mathbb{C}$ are constants, $b(x)$ is continuous.

1.3.1 Homogeneous Equations

The idea is to find a Basis of \mathcal{S} :

Def Characteristic Polynomial $P(X) = \prod_{i=1}^k (X - \alpha_i)$

Remark The unique roots $\alpha_1, \dots, \alpha_l$ form a Basis:

$$\text{span}(\mathcal{S}) = \{x^j e^{\alpha_i x} \mid i \leq l, 0 \leq j \leq v_i\}$$

v_1, \dots, v_k are the Multiplicities of $\alpha_1, \dots, \alpha_k$

Remark If $\alpha_j = \beta + \gamma i \in \mathbb{C}$ is a root, $\bar{\alpha}_j = \beta - \gamma i$ is too.

To get a real-valued solution, apply:

$$e^{\alpha_j x} = e^{\beta x} (\cos(\gamma x) + i \sin(\gamma x))$$

Explicit Homogeneous Solution

Using $\alpha_1, \dots, \alpha_k$ from $P(X)$ s.t. $\alpha_i \neq \alpha_j$, $z_i \in \mathbb{C}$ arbitrary

$$f(x) = \prod_{i=1}^k z_i \cdot e^{\alpha_i x} \quad \text{with} \quad f^{(j)(x)} = \prod_{i=1}^k z_i \cdot \alpha_i^j e^{\alpha_i x}$$

Multiple roots: same scheme, using the basis vectors of \mathcal{S}

Solutions exist $\forall Z = (z_1, \dots, z_k)$ since that system's $\det(M_Z) \neq 0$.

1.3.2 Inhomogeneous Equations

Method Undetermined Coefficients: An educated guess.

1. $b(x) = cx^d \cdot e^{\alpha x} \implies f_p(x) = Q(x)e^{\alpha x}$
 $\deg(Q) \leq d + v_\alpha$, where v_α is α 's multiplicity in $P(X)$
2. $b(x) = cx^d \cdot \cos(\alpha x)$
 $b(x) = cx^d \cdot \sin(\alpha x)$
 $\left. \begin{array}{l} f_p = Q_1(x) \cos(\alpha x) + Q_2(x) \sin(\alpha x) \\ \deg(Q_{1,2}) \leq d + v_\alpha, \text{ where } v_\alpha \text{ is } \alpha \text{'s multiplicity in } P(X) \end{array} \right\}$

Remark Applying Linearity

If $b(x) = \sum_{i=1}^n b_i(x)$, A solution for $b(x)$ is $f(x) = \sum_{i=1}^n f_i(x)$

Sometimes called *Superposition Principle* in this context

1.4 Other Methods

Method Change of Variable

If $f(x)$ is replaced by $h(y) = f(g(y))$, then h is a sol. too.

Changes like $h(t) = f(e^t)$ may lead to useful properties.

Separation of Variables

Form:

$$y' = a(y) \cdot b(x)$$

Solve using:

$$\int \frac{1}{a(y)} \, dy = \int b(x) \, dx + c$$

Usually $\int 1/a(y) \, dy$ can be solved directly for $\ln|a(y)| + c$.

2 Differential Calculus in \mathbb{R}^n