
Systems Programming and Computer Architecture Janis Hutz

Systems Programming and Computer
Architecture

Janis Hutz
https://janishutz.com

January 7, 2026

TITLE PAGE COMING SOON

“If you are using CMake to solve the exercises... First off, sorry that you like
CMake“

- Timothy Roscoe, 2025

HS2025, ETHZ
Summary of the Lectures and Lecture Slides

January 7, 2026 1 / 18

https://janishutz.com

Systems Programming and Computer Architecture Janis Hutz

Quotes
“An LLM is a lossy index over human statements“

- Professor Buhmann, Date unknown

“If you are using CMake to solve the exercises... First off, sorry that you like CMake“
“You can’t have a refrigerator behave like multiple refrigerators“

“Why is C++ called C++ and not ++C? It’s like you don’t get any value and then
it’s incremented, which is true“

- Timothy Roscoe, 2025

January 7, 2026 2 / 18

Systems Programming and Computer Architecture Janis Hutz

Contents
1 Introduction 4

2 x86 Assembly 5

3 The C Programming Language 6
3.1 Basics . 6

3.1.1 Control Flow . 7
3.1.2 Declarations . 8
3.1.3 Operators . 10
3.1.4 Arrays . 11
3.1.5 Strings . 11
3.1.6 Integers in C . 12
3.1.7 Pointers . 13

3.2 The C preprocessor . 15
3.3 Memory . 16

3.3.1 Dynamic Memory Allocation . 17

4 Hardware 18

January 7, 2026 3 / 18

Systems Programming and Computer Architecture Janis Hutz

1 Introduction
This summary tries to summarize everything that is important to know for this course. It aims to be a full replacement
for the slides, but as with all my summaries, there may be missing or incorrect information in here, so use at your own
risk. You have been warned!
The summary does not follow the order the lecture does. This is to make related information appear more closely to
each other than they have in the lecture and the summary assumes you have already seen the concepts in the lectures
or elsewhere (or are willing to be thrown in the deep end).
The target semester for this summary is HS2025, so there might have been changes in your year. If there are changes
and you’d like to update this summary, please open a pull request in the summary’s repo at

https://github.com/janishutz/eth-summaries

January 7, 2026 4 / 18

https://github.com/janishutz/eth-summaries

Systems Programming and Computer Architecture Janis Hutz

2 x86 Assembly

January 7, 2026 5 / 18

Systems Programming and Computer Architecture Janis Hutz

3 The C Programming Language
I can clearly C why you’d want to use C. Already sorry in advance for all the bad C jokes that are going to be part of this section

C is a compiled, low-level programming language, lacking many features modern high-level programming languages offer,
like Object Oriented programming, true Functional Programming (like Haskell implements), Garbage Collection, complex
abstract datatypes and vectors, just to name a few. (It is possible to replicate these using Preprocessor macros, more
on this later).
On the other hand, it offers low-level hardware access, the ability to directly integrate assembly code into the .c files,
as well as bit level data manipulation and extensive memory management options, again just to name a few.
This of course leads to C performing excellently and there are many programming languages whose compiler doesn’t
directly produce machine code or assembly, but instead optimized C code that is then compiled into machine code using
a C compiler. This has a number of benefits, most notably that C compilers can produce very efficient assembly, as lots
of effort is put into the C compilers by the hardware manufacturers.

There are many great C tutorials out there, a simple one (as for many other languages too) can be found here

3.1 Basics
C uses a very similar syntax as many other programming languages, like Java, JavaScript and many more. . . to be
precise, it is them that use the C syntax, not the other way around. So:

File: 00_intro.c

1 // This is a line comment
2 /* this is a block comment */
3 # include "01_func.h" // Relative import
4

5 int i = 0; // This allocates an integer on the stack
6

7 int main(int argc, char *argv[]) {
8 // This is the function body of a function (here the main function)
9 // which serves as the entrypoint to the program in C and has arguments

10 printf("Argc: %d\n", argc); // Number of arguments passed, always >= 1
11 // (first argument is the executable name)
12 for (int i = 0; i < argc; i++) // For loop just like any other sane programming language
13 printf("Arg %d: %s\n", i, argv[i]); // Outputs the i-th argument from CLI
14

15 get_user_input_int("Select a number"); // Function calls as in any other language
16 return 0; // Return a POSIX exit code
17 }

In C we are referring to the implementation of a function as a (function) definition (correspondingly, variable definition,
if the variable is initialized) and to the definition of the function signature (or variables, without initializing them) as the
(function) declaration (or, correspondingly, variable declaration).
C code is usuallt split into the source files, ending in .c (where the local functions and variables are declared, as well
as all function definitions) and the header files, ending in .h, usually sharing the filename of the source file, where the
external declarations are defined. By convention, no definition of functions are in the .h files, and neither variables, but
there is nothing preventing you from putting them there.

File: 01_func.h

1 # include <stdio.h> // Import from system path
2 // (like library imports in other languages)
3

4 int get_user_input_int(char prompt[]);

January 7, 2026 6 / 18

https://www.w3schools.com/c/index.php

Systems Programming and Computer Architecture Janis Hutz

3.1.1 Control Flow

Many of the control-flow structures of C can be found in the below code snippet. A note of caution when using goto:
It is almost never a good idea (can lead to unexpected behaviour, is hard to maintain, etc). Where it however is very
handy is for error recovery (and cleanup functions) and early termination of multiple loops (jumping out of a loop). So,
for example, if you have to run multiple functions to set something up and one of them fails, you can jump to a label
and have all cleanup code execute that you have specified there. And because the labels are (as in Assembly) simply
skipped over during execution, you can make very nice cleanup code. We can also use continue and break statements
similarly to Java, they do not however accept labels. (Reminder: continue skips the loop body and goes to the next
iteration)

File: 01_func.c

1 # include "01_func.h"
2 # include <stdio.h>
3

4 int get_user_input_int(char prompt[]) {
5 int input_data;
6 printf("%s", prompt); // Always wrap strings like this for printf
7 scanf("%d", &input_data); // Get user input from CLI
8 int input_data_copy = input_data; // Value copied
9

10 // If statements just like any other language
11 if (input_data)
12 printf("Not 0");
13 else
14 printf("Input is zero");
15

16 // Switch statements just like in any other language
17 switch (input_data) {
18 case 5:
19 printf("You win!");
20 break; // Doesn't fall through
21 case 6:
22 printf("You were close"); // Falls through
23 default:
24 printf("No win"); // Case for any not covered input
25 }
26

27 while (input_data > 1) {
28 input_data -= 1;
29 printf("Hello World\n");
30 }
31

32 // Inversed while loop (executes at least once)
33 do {
34 input_data -= 1;
35 printf("Bye World\n");
36 if (input_data_copy == 0)
37 goto this_is_a_label;
38 } while (input_data_copy > 1);
39

40 this_is_a_label:
41 printf("Jumped to label");
42 return 0;
43 }

January 7, 2026 7 / 18

Systems Programming and Computer Architecture Janis Hutz

3.1.2 Declarations

We have already seen a few examples for how C handles declarations. In concept they are similar (and scoping works
the same) to most other C-like programming languages, including Java.

File: 02_declarations.c

1 int my_int; // Allocates memory on the stack.
2 // Variable is global (read / writable by entire program)
3 static int my_local_int; // only available locally (in this file)
4 extern const char *var; // Defined in some other file
5 const int MY_CONST = 10; // constant (immutable), convention: SCREAM_CASE
6

7 enum { ONE, TWO } num; // Enum. ONE will get value 0, TWO has value 1
8

9 enum { O = 2, T = 1 } n; // Enum with values specified
10

11 // Structs are like classes, but contain no logic
12 struct MyStruct {
13 int el1;
14 int el2;
15 };
16

17 // Like structs, but can only hold one of the values!
18 union MyUnion {
19 int ival;
20 float fval;
21 char *sval;
22 };
23

24 int fun(int j) {
25 static int i = 0; // Persists across calls of fun
26 short my_var = 1; // Block scoped (deallocated when going out of scope)
27 int my_var_dbl = (int) my_var; // Explicit casting (works between almost all types)
28 return i;
29 }
30

31 int main(int argc, char *argv[]) {
32 if ((my_local_int = fun(10))) {
33 // Every c statement is also an expression, i.e. you can do the above!
34 }
35 struct MyStruct test; // Allocate memory on stack for struct
36 struct MyStruct *test_p = &test; // Pointer to memory where test resides
37 struct MyStruct test2;
38 union MyUnion my_uval; // Work exactly like structs for access
39 test.el1 = 1; // Direct element access
40 test_p->el2 = 2; // Via pointer
41 test2 = test; // Copies the struct
42 return 0;
43 }

January 7, 2026 8 / 18

Systems Programming and Computer Architecture Janis Hutz

A peculiarity of C is that the bit-count is not defined by the language, but rather the hardware it is compiled for.

C data type typical 32-bit ia32 x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 4 8 8
long double 8 10/12 16

Table 3.1: Comparison of byte-sizes for each datatype on different architectures
Type format Be however aware that this table uses the LP64 format for the x86-64 sizes and this is the format all

UNIX-Systems use (i.e. Linux, BSD, Darwin (the Mac Kernel)). 64 bit Windows however uses LLP64, i.e. int and
long have the same size (32) and long long and pointers are 64 bit.

Integers By default, integers in C are signed, to declare an unsigned integer, use unsigned int. Since it is hard
and annoying to remember the number of bytes that are in each data type, C99 has introduced the extended integer
types, which can be imported from stdint.h and are of form int<bit count> t and uint<bit count> t, where we
substitute the <bit count> with the number of bits (have to correspond to a valid type of course).

Booleans Another notable difference of C compared to other languages is that C doesn’t natively have a boolean
type, by convention a short is used to represent it, where any non-zero value means true and 0 means false. Since
boolean types are quite handy, the ! syntax for negation turns any non-zero value of any integer type into zero and
vice-versa. C99 has added support for a bool type via stdbool.h, which however is still an integer.

Implicit casts Notably, C doesn’t have a very rigid type system and lower bit-count types are implicitly cast to higher
bit-count data types, i.e. if you add a short and an int, the short is cast to short (bits 16-31 are set to 0) and the two
are added. Explicit casting between almost all types is also supported. Some will force a change of bit representation,
but most won’t (notably, when casting to and from float-like types, minus to void)

Expressions Every C statement is also an expression, see above code block for example.

Void The void type has no value and is used for untyped pointers and declaring functions with no return value

Structs Are like classes in OOP, but they contain no logic. We can assign copy a struct by assignment and they
behave just like everything else in C when used as an argument for functions in that they are passed by value and not by
reference. You can of course pass it also by reference (like any other data type) by setting the argument to type struct
mystruct * name and then calling the function using func(&test) assuming test is the name of your struct

Typedef To define a custom type using typedef <type it represents> <name of the new type>.

You may also use typedef on structs using typedef struct <struct tag> <name of the new alias>, you can
thus instead of e.g. struct list_el my_list; write list my_list;, if you have used typedef struct list_el list;
before. It is even possible to do this:

1 typedef struct list_el {
2 unsigned long val;
3 struct list_el *next;
4 } list_el;
5

6 struct list_el my_list;
7 list_el my_other_list;

Namespaces C has a few different namespaces, i.e. you can have the one of the same name in each namespace (i.e.
you can have struct a, int a, etc). The following namespaces were covered:

• Label names (used for goto)
• Tags (for struct, union and enum)
• Member names one namespace for each struct, union and enum
• Everything else mostly (types, variable names, etc, including typedef)

January 7, 2026 9 / 18

Systems Programming and Computer Architecture Janis Hutz

3.1.3 Operators

The list of operators in C is similar to the one of Java, etc. In Table 3.2, you can see an overview of the operators,
sorted by precedence in descending order. You may notice that the & and * operators appear twice. The higher
precedence occurrence is the address operator and dereference, respectively, and the lower precedence is bitwise and
and multiplication, respectively.
Very low precedence belongs to boolean operators && and ||, as well as the ternary operator and assignment operators

Operator Associativity
() [] -> . Left-to-right
! ˜ ++ -- + - * & (type) sizeof Right-to-left
* / % Left-to-right
+ - Left-to-right
<< >> Left-to-right
< <= >= > Left-to-right
== != Left-to-right
& (logical and) Left-to-right
ˆ (logical xor) Left-to-right
| (logical or) Left-to-right
&& (boolean and) Left-to-right
|| (boolean or) Left-to-right
? : (ternary) Right-to-left
= += -= *= /= %= &= ˆ=—= <<= >>= Right-to-left
, Left-to-right

Table 3.2: C operators ordered in descending order by precedence

Associativity

• Left-to-right: A + B + C 7→ (A + B) + C

• Right-to-left: A += B += C 7→ (A += B) += C

As it should be, boolean and, as well as boolean or support early termination.
The ternary operator works as in other programming languages result = expr ? res_true : res_false;

As previously touched on, every statement is also an expression, i.e. the following works
printf("%s", x = foo(y)); // prints output of foo(y) and x has that value

Pre-increment (++i, new value returned) and post-increment (i++, old value returned) are also supported by C.
C has an assert statement, but do not use it for error handling. The basic syntax is assert(expr);

January 7, 2026 10 / 18

Systems Programming and Computer Architecture Janis Hutz

3.1.4 Arrays

C compiler does not do any array bound checks! Thus, always check array bounds. Unlike some other programming
languages, arrays are not dynamic length.
The below snippet includes already some pointer arithmetic tricks. The variable data is a pointer to the first element
of the array.

File: 03_arrays.c

1 # include <stdint.h>
2 # include <stdio.h>
3

4 int main(int argc, char *argv[]) {
5 int data[10]; // Initialize array of 10 integers
6 data[5] = 5; // element 5 is now 5
7 *data = 10; // element 0 is now 5
8 printf("%d\n", data[0]); // print element 0 (prints 10)
9 printf("%d\n", *data); // equivalent as above

10 printf("%d\n", data[5]); // print element 5 (prints 5)
11 printf("%d\n", *(data + 5)); // equivalent as above
12 int multidim[5][5]; // 2-dimensional array
13 // We can iterate over it using two for-loops
14 int init_array[2][2] = {
15 {1, 2},
16 {3, 4}
17 }; // We can initialize an array like this
18 int empty_arr[4] = {}; // Initialized to 0
19 return 0;
20 }

3.1.5 Strings

C doesn’t have a string data type, but rather, strings are represented (when using ASCII) as char arrays, with length
of the array n + 1 (where n is the number of characters of the string). The extra element is the termination character,
called the null character, denoted \0. To determine the actual length of the string (as it may be padded), we can
use strnlen(str, maxlen) from string.h

File: 04_strings.c

1 # include <stdio.h>
2 # include <string.h>
3

4 int main(int argc, char *argv[]) {
5 char hello[6] = "hello"; // Using double quotes
6 char world[6] = { 'w', 'o', 'r', 'l', 'd', '\0' }; // As array
7

8 char src[12], dest[12];
9 strncpy(src, "ETHZ", 12); // Copy strings (extra elements will be set to \0)

10 strncpy(dest, src, 12); // Copy strings (last arg is first n chars to copy)
11 if (strncmp(src, dest, 12)) // Compare two strings. Returns 1 if src > dest
12 printf("Hello World");
13 strncat(dest, " is in ZH", 12); // Concatenate strings
14 return 0;
15 }

January 7, 2026 11 / 18

Systems Programming and Computer Architecture Janis Hutz

3.1.6 Integers in C

As a reminder, integers are encoded as follows in big endian notation, with xi being the i-th bit and w being the number
of bits used to represent the number:

• Unsigned :
w−1∑
i=0

xi · 2i

• Signed : −xw−1 · 2w−1 +
w−1∑
i=0

xi · 2i (two’s complement notation, with xw−1 being the sign-bit)

The minimum number representable is 0 and −2w−1, respectively, whereas the maximum number representable is 2w −1
and 2w−1 − 1. limits.h defines constants for the minimum and maximum values of different types, e.g. ULONG_MAX
or LONG_MAX and LONG_MIN

We can use the shift operators to multiply and divide by two. Shift operations are usually much cheaper than multiplica-
tion and division. Left shift (u << k in C) always fills with zeros and throws away the extra bits on the left (equivalent
to multiplication by 2k), whereas right shift (u >> k in C) is implementation-defined, either arithmetic (fill with most
significant bit, division by 2k. This however rounds incorrectly, see below) or logical shift (fill with zeros, unsigned
division by 2k).
Signed division using arithmetic right shifts has the issue of incorrect rounding when number is < 0. Instead, we represent
s/2k = s + (2k − 1) >> k for s < 0 and s/2k = s >> k for s > 0

In expressions, signed values are implicitly cast to unsigned

This can lead to all sorts of nasty exploits (e.g. provide −1 as the argument to memcpy and watch it burn, this was an
actual exploit in FreeBSD)

Addition & Subtraction

A nice property of the two’s complement notation is that addition and subtraction works exactly the same as in normal
notation, due to over- and underflow. This also obviously means that it implements modular arithmetic, i.e.

Addw(u, v) = u + v mod 2w and Subw(u, v) = u − v mod 2w

Multiplication & Division

Unsigned multiplication with addition forms a commutative ring. Again, it is doing modular arithmetic and

UMultw(u, v) = u · v mod 2w

January 7, 2026 12 / 18

Systems Programming and Computer Architecture Janis Hutz

3.1.7 Pointers

On loading of a program, the OS creates the virtual address space for the process, inspects the executable and loads the
data to the right places in the address space, before other preparations like final linking and relocation are done.
Stack-based languages (supporting recursion) allocate stack in frames that contain local variables, return information
and temporary space. When a procedure is entered, a stack frame is allocated and executes any necessary setup code
(like moving the stack pointer, see later). When a procedure returns, the stack frame is deallocated and any necessary
cleanup code is executed, before execution of the previous frame continues.
In C a pointer is a variable whose value is the memory address of another variable

Of note is that if you simply declare a pointer using type * p; you will get different memory addresses every time. The
(Linux)-Kernel randomizes the address space to prevent some common exploits.

File: 05_pointers.c

1 # include "01_func.h" // See a few pages up for declarations
2 # include <assert.h>
3 # include <stdio.h>
4 # include <stdlib.h>
5

6 void a_function(int (*func)(char *), char prompt[]) {
7 (*func)(prompt); // Call function with arguments
8 }
9

10 int main(int argc, char *argv[]) {
11 int x = 0;
12 int *p = &x; // Get x's memory address
13 printf("%p\n", p); // Print the address of x
14 printf("%d\n", *p); // Dereference pointer (get contents of memory location)
15 *p = 10; // Dereference assign
16 int **dbl_p = &p; // Double pointer (pointer to pointer to value)
17 int *null_p = NULL; // Create NULL pointer
18 *null_p = 1; // Segmentation fault due to null pointer dereference
19

20 // pointer arithmetic
21 int arr[3] = { 2, 3, 4 };
22 char c_arr[3] = { 'A', 'B', 'C' };
23 int *arr_p = &arr[1];
24 char *c_arr_p = &c_arr[1];
25 c_arr_p += 1; // Now points to c_arr[2]
26 arr_p -= 1; // Now points to arr[0]
27

28 char *arr_p_c = (char *) arr_p; // Cast to char pointer (points to first byte of arr[0])
29 printf("%d", *(arr_p - 5)); // No boundary checks (can access any memory)
30 assert(arr == &(arr[0])); // Evaluates to true
31 int new_arr[3] = arr; // Compile time error (cannot use other array as

initializer)↪→

32 int *new_arr_p = &arr[0]; // This works
33

34 a_function(&get_user_input_int, c_arr);
35

36 return EXIT_SUCCESS;
37 }

January 7, 2026 13 / 18

Systems Programming and Computer Architecture Janis Hutz

Some pointer arithmetic has already appeared in section 3.1.4, but same kind of content with better explanation can be found here

Pointer Arithmetic Note that when doing pointer arithmetic, adding 1 will move the pointer by sizeof(type) bits.
You may use pointer arithmetic on whatever pointer you’d like (as long as it’s not a null pointer). This means, you can
make an array wherever in memory you’d like. The issue is just that you are likely to overwrite something, and that
something might be something critical (like a stack pointer), thus you will get undefined behaviour! (This is by the
way a common concept in C, if something isn’t easy to make more flexible (example for malloc, if you pass a pointer
to memory that is not the start of the malloc’d section, you get undefined behaviour), in the docs mention that one
gets undefined behaviour if you do not do as it says so. . . RTFM!)
As already seen in the section arrays (section 3.1.4), we can use pointer arithmetic for accessing array elements. The
array name is treated as a pointer to the first element of the array, except when:

• it is operand of sizeof (return value is n · sizeof(type) with n the number of elements)
• its address is taken (then &a == a)
• it is a string literal initializer. If we modify a pointer char *b = "String"; to string literal in code, the "String"

is stored in the code segment and if we modify the pointer, we get undefined behaviour

Fun fact : A[i] is always rewritten *(A + i) by compiler.

Function arguments Another important aspect is passing by value or by reference. You can pass every data type by
reference, you can not however pass an array by value (as an array is treated as a pointer, see above).

Body-less loops

1 int x = 0;
2 while (x++ < 10); // This is (of course) not a useful snippet, but shows the concept

Function pointers A function can be passed as an argument to another function using the typical address syntax with
the & symbol is annotated as argument using type (* name)(type arg1, ...) and is called using (*func)(arg1, ...).

January 7, 2026 14 / 18

Systems Programming and Computer Architecture Janis Hutz

3.2 The C preprocessor
To have gcc stop compiliation after running through cpp, the C preprocessor, use gcc -E <file name>.
Imports in C are handled by the preprocessor, that for each #include <file1.h>, the preprocessor simply copies the
contents of the file recursively into one file.
Depending on if we use #include <file1.h> or #include "file1.h" the preprocessor will search for the file either
in the system headers or in the project directory. Be wary of including files twice, as the preprocessor will recursively
include all files (i.e. it will include files from the files we included)
The C preprocessor gives us what are called preprocessor macros, which have the format #define NAME SUBSTITUTION.

File: 00_macros.c

1 # include <stdio.h>
2 # include <stdlib.h>
3 # define FOO BAZ
4 # define BAR(x) (x + 3)
5 # define SKIP_SPACES(p) \
6 do { \
7 while (p > 0) { p--; } \
8 } while (0)
9 # define COMMAND(c) { #c, c##_command } // Produces { "<val(c)>", "<val(c)>_command" }

10

11 # ifdef FOO // If macro is defined, ifndef for if not defined
12 # define COURSE "SPCA"
13 # else
14 # define COURSE "Systems Programming and Computer Architecture"
15 # endif
16

17 # if 1
18 # define OUT HELLO // if statement
19 # endif
20

21 int main(int argc, char *argv[]) {
22 int i = 10;
23 SKIP_SPACES(i);
24

25 printf("%s", COURSE);
26

27 return EXIT_SUCCESS;
28 }

To avoid issues with semicolons at the end of preprocessor macros that wrap statements that cannot end in semicolons,
we can use a concept called semicolon swallowing. For that, we wrap the statements in a do ... while(0) loop, which
is removed by the compiler on compile, also taking with it the semicolon.
There are also a number of predefined macros:

• __FILE__: Filename of processed file
• __LINE__: Line number of this usage of macro
• __DATE__: Date of processing
• __TIME__: Time of processing
• __STDC__: Set if ANSI Standard C compiler is used
• __STDC_VERSION__: The version of Standard C being compiled
• . . . many more

In headers, we typically use #ifndef __FILENAME_H_ followed by a #define __FILENAME_H_ or the like to check if
the header was already included before

January 7, 2026 15 / 18

Systems Programming and Computer Architecture Janis Hutz

3.3 Memory
In comparison to most other languages, C does not feature automatic memory management, but instead gives us full,
manual control over memory. This of course has both advantages and disadvantages.
File: 00_memory.c

1 # include <stdlib.h>
2

3 int main(int argc, char *argv[]) {
4 long *arr = (long *) malloc(10 * sizeof(long)); // Allocate on heap
5 if (arr == NULL) // Check if successful
6 return EXIT_FAILURE;
7 arr[0] = 5;
8

9 long *arr2;
10 if ((arr2 = (long *) calloc(10, sizeof(long))) == NULL)
11 return EXIT_FAILURE; // Same as above, but fewer lines and memory zeroed
12

13 // Reallocate memory (to change size). Always use new pointer and do check!
14 if ((arr2 = (long *) realloc(arr2, 15 * sizeof(long))) == NULL)
15 return EXIT_FAILURE;
16

17 free(arr); // Deallocate the memory
18 arr = NULL; // Best practice: NULL pointer
19 free(arr2); // *Can* omit NULLing pointer because end
20

21 return EXIT_SUCCESS;
22 }

Notably, the argument size t sz for malloc, calloc and realloc is an unsigned integer of some size and differs
depending on hardware and software platforms.
malloc keeps track of which blocks are allocated. If you give free a pointer that isn’t the start of the memory region
previously malloc’d, you get undefined behaviour.

Memory corruption There are many ways to corrupt memory in C. The below code shows off a few of them:
File: 01_mem-corruption.c

1 # include <stdlib.h>
2

3 int main(int argc, char **argv) {
4 int a[2];
5 int *b = malloc(2 * sizeof(int)), *c;
6 a[2] = 5; // assign past the end of an array
7 b[0] += 2; // assume malloc zeroes out memory
8 c = b + 3; // mess up your pointer arithmetic
9 free(&(a[0])); // pass pointer to free() that wasn't malloc'ed

10 free(b);
11 free(b); // double-free the same block
12 b[0] = 5; // use a free()'d pointer
13 // any many more!
14 return 0;
15 }

Memory leaks If we allocate memory, but never free it, we use more and more memory (old memory is inaccessible)

Dynamic data structures We build it using structs that have a pointer to another struct inside them. We have to
allocate memory for each element and then add the pointer to another struct. For a generic dynamic data structure,
make the element a void pointer. This in general is the concept used for functions operating on any data type.

January 7, 2026 16 / 18

Systems Programming and Computer Architecture Janis Hutz

3.3.1 Dynamic Memory Allocation

Memory allocated with malloc is typically 8- or 16-byte aligned.

Explicit vs. Implicit In explicit memory management, the application does both the allocation and deallocation
memory, whereas in implicit memory management, the application allocates the memory, but usually a Garbage Collector
(GC) frees it.
For some languages, like Rust, one would assume that it does implicit allocation, but Rust is a language using explicit
management, it’s just that the compiler and not the programmer decides when to allocate and when to deallocate.

Assumptions in this course We assume that memory is word addressed (= 8 Bytes).

Goals The allocation should have the highest possible throughput and at the same time the best (i.e. lowest) possible
memory utilization. This however is usually conflicting, so we have to balance the two.

Definition: Aggregate payload Pk: All malloc’d stuff minus all free’d stuff

Definition: Current heap size Hk: Monotonically non-decreasing. Grows when sbrk system call is issued.

Definition: Peak memory utilization Uk = (maxi<k Pi)/Hk

A bit problem for the free function is to know how much memory to free without knowing the size of the to be freed
block. This is just one of many other implementation issues:

• How do we keep track of the free blocks? I.e. where and how large are they?
• What do we do with the extra space of a block when allocating a smaller block?
• How do we pick a block?
• How do we reinsert a freed block into the heap?

This all leads to an issue known as fragmentation

Definition: Internal Fragmentation: If for a given block the payload (i.e. the requested size) is smaller than the
block size. This depends on the pattern of previous requests and is thus easy to measure

Definition: External Fragmentation: There is enough aggregate heap memory, but there isn’t a single large enough
free block available This depends on the pattern of future requests and is thus hard to measure

January 7, 2026 17 / 18

Systems Programming and Computer Architecture Janis Hutz

4 Hardware
Remember: Rust and the like have an unsafe block... C’s equivalent to this is

1 int main(int argc, char *argv[]) {
2 // Unsafe code goes here
3 }

i.e. YOU are the one that makes C code safe!

January 7, 2026 18 / 18

	Introduction
	x86 Assembly
	The C Programming Language
	Basics
	Control Flow
	Declarations
	Operators
	Arrays
	Strings
	Integers in C
	Pointers

	The C preprocessor
	Memory
	Dynamic Memory Allocation

	Hardware

