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0 Introduction

This summary is intended to give you a broad overview of the topics relevant for the exam. While it aims to serve as a
full on replacement for the script, please do not fully rely on it, as there may be mistakes, inaccuracies and missing details
as compared to the script. Furthermore, you will only have access to the script during the exam, so getting familiar with
the script is a good idea. We have decided to write it in German, as is the new script and for some of the topics that
are poorly explained in the script, we have added further explanations.

The numbering should match the script's numbering exactly (apart from the cases where two definitions were combined
due to being closely related and short), making it easier for you to look up the relevant definitions, theorems, etc in
context in the script.

Many of the figures in this summary were taken directly from the Script or Lecture notes created by Professor Vasile
Gradinaru.

We have also taken some explanations and code examples from the slides of our TA, Nils Miiller, whose slides can be
found . (Link will be updated if we are to get a new website link from him, as n.ethz.ch is down now)
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1 Einfiihrung
1.1 Rundungsfehler

Absoluter & Relativer Fehler Definition 1.1.1

|7 — ||

|||

» Absoluter Fehler: ||z — z||

= Relativer Fehler: fur ||z]| £ 0

wobei Z eine Approximation an x € R ist

Rundungsfehler entstehen durch die (verhaltnismassig) geringe Prézision die man mit der Darstellung von Zahlen auf
Computern erreichen kann. Zusitzlich kommt hinzu, dass durch Unterl3ufe (in diesem Kurs ist dies eine Zahl die zwischen
0 und der kleinsten darstellbaren, positiven Zahl liegt) Prazision verloren gehen kann.

Uberlaufe hingegen sind konventionell definiert, also eine Zahl, die zu gross ist und nicht mehr dargestellt werden kann.

Ausloschung Bemerkung 1.1.9

Bei der Subtraktion von zwei dhnlich grossen Zahlen kann es zu einer Addition der Fehler der beiden Zahlen
kommen, was dann den relativen Fehler um einen sehr grossen Faktor vergrdssert. Die Subtraktion selbst hat
einen vernachlassigbaren Fehler

Beispiel 1.1.18: (Ableitung mit imagindrem Schritt) Als Referenz in Graphen wird hier oftmals die Implementation
des Differenzialquotienten verwendet.

Der Trick hier ist, dass wir mit Komplexen Zahlen in der Taylor-Approximation einer glatten Funktion in z( einen rein
imaginaren Schritt durchfithren kdénnen:

1
f(xo +ih) = f(xo) + f'(wo)ih — §f”(3:0)h2 —4C - h? fir h€ Rund h — 0

Da f(xo) und f”(x¢)h? reell sind, verschwinden die Terme, wenn wir nur den Imaginirteil des Ausdruckes weiterver-
wenden. Nach weiteren Vereinfachungen und Umwandlungen erhalten wir

oo = MU+ 1)

Falls jedoch hier die Auswertung von Im(f(zo + ih)) nicht exakt ist, so kann der Fehler betrachtlich sein.

Beispiel 1.1.20: (Konvergenzbeschleunigung nach Richardson)

yf'(x) = yd (g) + %f’“(x);«ﬁ + ﬁﬂs)m Y= @)

= —d(h) — @ + s f O R 35 @)

=4d (Z) d(h) + 0O (h') &

wobei im Schema dann
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und

und f'(z) = Rjx + C - (%)%+2

1.2 Rechenaufwand

In NumCS wird die Anzahl elementarer Operationen wie Addition, Multiplikation, etc benutzt, um den Rechenaufwand
zu beschreiben. Wie in Algorithmen und * ist auch hier wieder O (...) der Worst Case. Teilweise werden auch andere
Funktionen wie sin, cos, ,/--.,... dazu gezahlt.

Die Basic Linear Algebra Subprograms (= BLAS), also grundlegende Operationen der Linearen Algebra, wurden be-
reits stark optimiert und sollten wann immer méglich verwendet werden und man sollte auf keinen Fall diese selbst
implementieren.

Dieser Kurs verwendet numpy, scipy, sympy (collection of implementations for symbolic computations) und matplotlib.
Dieses Ecosystem ist eine der Starken von Python und ist interessanterweise zu einem Grossteil nicht in Python geschrie-
ben, da dies sehr langsam ware.
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1.3 Rechnen mit Matrizen

Wie in Lineare Algebra besprochen, ist das Resultat der Multiplikation einer Matrix A € C™*™ und einer Matrix
B € C"*P st eine Matrix AB = C™*P

- haben wir folgende Funktionen:

» b @ a (oder np.dot(b, a) oder np.einsum('i,i', b, a) fiir das Skalarprodukt
» A @ B (oder np.einsum('ik,kj->ij"', )) fiir das Matrixprodukt

» A @ x (oder np.einsum('ij,j->i', A, x)) fur Matrix x Vektor

= A.T fir die Transponierung

» A.conj() fir die komplexe Konjugation (kombiniert mit .T = Hermitian Transpose)
» np.kron(A, B) fiir das Kroneker Produkt

» b = np.array([4.j, 5.j1) um einen Array mit komplexen Zahlen zu erstellen (j ist die imaginare Einheit, aber
es muss eine Zahl direkt daran geschrieben werden)

Bemerkung 1.3.4: (Rang der Matrixmultiplikation) Rang(AX) = min(Rang(A), Rang(X))

Bemerkung 1.3.7: (Multiplikation mit Diagonalmatrix D) D x A skaliert die Zeilen von A wahrend A x D die Spalten
skaliert

Beispiel 1.3.8: D @ A braucht O (n?’) Operationen, wenn wir jedoch D.diagonal() [:, np.newaxis] * A verwen-

den, so haben wir nur noch O (ng) Operationen, da wir die vorige Bemerkung Nutzen und also nur noch eine Skalierung
vornehmen. So kénnen wir also eine ganze Menge an Speicherzugriffen sparen, was das Ganze bedeutend effizienter
macht

Bemerkung 1.3.14: Wir kénnen bestimmte Zeilen oder Spalten einer Matrix skalieren, in dem wir einer Identitdtsmatrix
im unteren Dreieck ein Element hinzufigen. Wenn wir nun diese Matrix E (wie die in der LU-Zerlegung) linksseitig mit
der Matrix A multiplizieren (bspw. E(>Y A), dann wird die zugehorige Zeile skaliert. Falls wir aber AE(?1) berechnen,
so skalieren wir die Spalte

Bemerkung 1.3.15: (Blockweise Berechnung) Man kann das Matrixprodukt auch Blockweise berechnen. Dazu benut-
zen wir eine Matrix, deren Elemente andere Matrizen sind, um grossere Matrizen zu generieren. Die Matrixmultiplikation
funktioniert dann genau gleich, nur dass wir fiir die Elemente Matrizen und nicht Skalare haben.

Untenstehend eine Tabelle zum Vergleich der Operationen auf Matrizen

Name Operation  Mult Add Komplexitat
Skalarprodukt xfly n n—1 O (n)
Tensorprodukt zyl! nm 0 O (mn)
Matrix x Vektor Az mn  (n—1)m O (mn)
Matrixprodukt AB mnp (n—1)mp O (mnp)

Bemerkung 1.3.16: Das Matrixprodukt kann mit Strassen’s Algorithmus mithilfe der Block-Partitionierung in O (n1°g2(7)) ~

O (n?#1) berechnet werden.

Bemerkung 1.3.17: (Rang 1 Matrizen) Kénnen als Tensorprodukt von zwei Vektoren geschrieben werden. Dies ist
beispielsweise hierzu niitzlich:

Sei A =ab'. Dann gilt y = Az < y = a(b'z), was dasselbe Resultat ergibt, aber nur O (m + n) Operationen und
nicht O (mn) bendtigt wie links.

Beispiel 1.3.18: Fiir zwei Matrizen A, B € R"*? mit geringem Rang p < n, dann kann mithilfe eines Tricks die

Rechenzeit von np.triu(A @ B.T) @ x von O (pn?) auf O (pn) reduziert werden. Die hier beschriebene Operation
berechnet Upper(AB ')z wobei Upper(X) das obere Dreieck der Matrix X zuriick gibt. Wir nennen diese Matrix hier

R. - kénnen wir den folgenden Ansatz verwenden, um die Laufzeit zu verringern: Da die Matrix R eine

obere Dreiecksmatrix ist, ist das Ergebnis die Teilsummen von unserem Umgekehrten Vektor z, also kénnen wir mit
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np.cumsum(x[::-1], axis=0)[::-1] die Kummulative Summe berechnen. Das [: :-1] dient hier lediglich dazu, den
Vektor x umzudrehen, sodass das richtige Resultat entsteht. Die vollstandige Implementation sieht so aus:

def low_rank_matrix_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
n, _ = A.shape
y = np.zeros(n)

# Compute B * = with broadcasting (z needs to be reshaped to 2D)
v = B * x[:, None]

# s 1s defined as the reverse cummulative sum of our vector
# (and we need it reversed again for the final calculation to be correct)
= np.cumsum(v[::-1], axis=0) [::-1]

n
|

y = np.sum(A * s)

Definition 1.3.21: (Kronecker-Produkt) Das Kronecker-Produkt ist eine (ml) x (nk)-Matrix, fir A € R™*" und
B € RI*F,

- kénnen wir dieses einfach mit np.kron(A, B) berechnen (ist jedoch nicht immer ideal):

(A11B  (A)2B .. ... (A)1.B
Ao B )21B  (A)22B ... ... (A)nB
(A)miB (A)psB o oo (Ao

Beispiel 1.3.22: (Multiplikation des Kronecker-Produkts mit Vektor) Wenn man A® B-x berechnet, so ist die Laufzeit

O (m xnx1lxk), aber wenn wir den Vektor x in n gleich grosse Blécke aufteilen (was man je nach gewiinschter
nachfolgender Operation in NumPy in O (1) machen kann mit x.reshape(n, x.shape[0] / n)), dann ist es moglich
das Ganze in O (m -1 - k) zu berechnen.

Die vollstéandige Implementation ist auch hier nicht schwer und sieht folgendermassen aus:

def fast_kron_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
# First multiply Bz_i, (and define z_% as a reshaped numpy array to save cost (as that
< will create a waltd array))
# This will actually crash if x.shape[0] is not divisible by A.shape[0]
bx = B * x.reshape(A.shape[0], round(x.shape[0] / A.shape[0]))
# Then multiply a with the resulting vector
y = A 0 bx

Um die oben erwdhnte Laufzeit zu erreichen muss erst ein neuer Vektor berechnet werden, oben im Code bx genannt,
der eine Multiplikation von Bx_i als Eintrage hat.
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2 Polynominterpolation

2.1 Interpolation und Polynome

Bei der Interpolation versuchen wir eine Funktion fdurch eine Menge an Datenpunkten einer Funktion f zu finden.

Die x; heissen Stitzstellen/Knoten, fiir welche f(z;) = y; gelten soll. (Interpolationsbedingung)

o X1 ... In

, T,y €ER
Yo Y1 --- Yn i

Normalerweise stellt f eine echte Messung dar, d.h. macht es Sinn anzunehmen dass f glatt ist.
Die informelle Problemstellung oben lasst sich durch Vektorraume formalisieren:

f €V, wobei V ein Vektorraum mit dim()) = oo ist.

Wir suchen d.h. fin einem Unterraum V,, mit endlicher dim(V,,) = n. Sei B,, = {b1,...,b,} eine Basis fiir V,,. Dann

lasst sich der Bezug zwischen f und f: fn(x) so ausdriicken:

f(x) = fulz) =Y asbi(@)
j=1

Bemerkung 2.1.1: Unterrdume V), existieren nicht nur fir Polynome, wir beschranken uns aber auf b;(x)
Andere Méglichkeiten: b; = cos((j — 1) cos™ 1(x)) (Chebyshev) oder b; = €*2™i* (Trigonometrisch)

Satz 2.1.2: (Peano) f stetig = Jp(x) welches f in || - || beliebig gut approximiert.

Definition 2.1.5:] (Raum der Polynome) Py, := {z — Z?:o a2’} (Definition 2.1.6: (Monom) f: x s a*
Satz 2.1.7: (Eigenschaft von Py;) Py, ist ein Vektorraum mit dim(Py) = &k + 1.

2.1.1 Monombasis

Satz 2.1.8: (Eindeutigkeit) p(x) € (P)y ist durch k + 1 Punkte y; = p(z;) eindeutig bestimmt.

Dieser Satz kann direkt angewendet werden zur Interpolation, in dem man p(z) als Gleichungssystem schreibt.

I x - zg| [0 Yo

. 0 1z - 27| |a N
pn(z) = apz™ + - + apx = S _ =

1 Tn e .132 Qo Yn

Vandermonde Matrix

Um «; zu finden ist die Vandermonde Matrix unbrauchbar, da die Matrix schlecht konditioniert ist.

Zur Auswertung von p(z) kann man direkt die Matrix-darstellung nutzen, oder effizienter:

Definition 2.1.9:] (Horner Schema) p(x) = (z ... x(x(an® + n—1) + ... + 1) + ap)

1

- liefert polyfit die direkte Auswertung, polyval wertet Polynome via Horner-Schema aus. (Gemiss Script,

in der Praxis sind diese Funktionen deprecated)
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2.2 Newton Basis
Die Newton-Basis hat den Vorteil, dass sie leichter erweiterbar als die Monombasis ist.

Die Konstruktion verlauft iterativ, und vorherige Datenpunkte miissen nicht neuberechnet werden.

po(x) = Yo (Anfang: triviales Polynom)
p1(x) = polx) + (xz — $o)((y1_y0)) (Addition des zweiten Datenpunktes)
1 — X0
(y2=y1) _ (Y1—%o)
pa(x) = py(z) + 2B TTT0 (0 gy (o — ) (Schema lasst sich beliebig weiterfiihren)
T2 — X0
ps(x) =po(x) + ...
Satz 2.2.2: (Newton-Basis) {Ny, ... ,N,} ist eine Basis von P,
No(z):=1 Ni(z):=z—x0 Na(z):=(x—x0)(x—21)
n—1
N, (z) := H(x — x;)
i=0

2.2.1 Koeffizienten

n

Wegen Satz 2.2.3 lasst sich jedes p,, € P, als p,(z) = ZB'LN'L('T) darstellen. Ein Gleichungssystem liefert alle 3;:

=0
1 0 - 0] (B Yo
I No -+ 0| [P (7

Die Matrixmultiplikation in O(n?) ist aber nicht nétig: Es gibt ein effizienteres System.

Definition 2.2.4: (Dividierte Differenzen)

zo | ylzo]
> y[ﬁf(), xl]
ylzil == wi z1 | ylod] > ylzo, 71, 72]

Rec. Y[Tit1, -+ s Tigk] = Y[Ti, oo, Tigp1] > ylwy, ]

ylzi, .. x| = P T2 | ylwo] > ylz1, 2, T3]
1 C 7
> y[za, 23]
z3 | ylzs]

Bemerkung 2.2.5: (Aquidistante Stellen)
Falls ; = z¢ 4 j - h gilt vereinfacht sich einiges:

~~

=AJ

1
ylwo, v1] = EAyo
1
= A2
y[‘r07x17$2] 2'h Yo
1
ey Tp] = A"
ylwo, o xa] = —m Ao

Satz 2.2.8: (Newton) Falls 8; = y[zo, ... ,x;] geht das resultierende Polynom durch alle (x;, y;).

(D.h. die dividierten Differenzen sind korrekt.)

Beispiel 2.2.9: (Runge-Funktion) Die Runge-Funktion kann am Rand des gewéahlten Intervalls starke Oszillationen in
der Interpolation verursachen, wenn bspw. die Stiitzstellen nicht gut gewahlt sind oder das Polynom einen zu hohen

Grad hat. Sie ist definiert durch f(x) =

1+ 22
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Matrixmultiplikation in O(n?), Speicher O(n?) Vektorisierter Ansatz in O(n?), Speicher O(n)
# Slow matriz approach 1 # Fast vectorized approach
def divdiff_slow(x,y): 2 def divdiff_fast(x,y):
n = y.size 3 n = y.shape[0]
T = np.zeros((n,n)) 4
T[:,0] =y 5 for k in range(l, n):
6 ylk:1 = (ylk:1 - y[(&-1):n-11)
for 1 in range(l,n): 7 ylk:1 /= (x[k:] - x[0:n-k])
for i in range(n-1): 8
T[i, 1] = (T[i+1,1-1] - T[i, 1-11) return y

Tli, 11 /= (x[i+1] - x[il)

return TI[O,:]

2.2.2 Auswertung

Auswertung eines Newton-Polynoms funktioniert in O(n) durch ein modifiziertes Horner-Schema:

1 def evalNewton(x_data, beta, x):

Po = Pn 2 p = np.zeros(x.shape[0])
p1 = (z —2pn_1)po + Bn_1 3 p += betal[beta.shape[0]-1]
P2 = (IE - xn—Q)pl + Bn—Q 4
5 for i in range(l, n+1):
6 p = (x - x_data[n-i])*p + beta[n-i]
Pn = p(l‘> 7
8 return p

2.2.3 Fehler

Satz 2.2.10: f n-mal diff.-bar, y; = f(z;) = 3¢ € (min; x;, max; x;) s.d. y[xg,z1,...,2,] = {::%?

Satz 2.2.11: (Fehler) f : [a,b] — R ist (n + 1)-mal diff.-bar, p ist das Polynom zu f in xzg,..., 2, € [a,b].

n (n+1)
Va € [a,b] 3§ € (a,b) : f(x)_P(af):H(x—xi)'m
Fehler =0

Man bemerke: Die Wahl der Stiitzpunkte hat direkten Einfluss auf den Fehler.
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2.3 Lagrange- und Baryzentrische Interpolationsformeln

Lagrange Polynome Definition 2.3.1

Fir Knoten (auch gennannt Stitzstellen) zg,1,...,2, € R definieren wir die Lagrange-Polynome fir n =
Anzahl Stitzstellen, also haben wir n — 1 Briiche, da wir eine lteration iliberspringen, weil bei dieser j = i ist:

T —x;
li(x) = -1
@=117—2
1\ J
Falls 5 = ¢ im Produkt, so Giberspringt j diese Zahl.

Beispiel 2.3.2: Seien x,x1,xo die Stitzstellen fiir die Lagrange-Polynome (mit n = 2):

lo(z)zl‘*fﬂl.xfIQ ll(x)zxfl‘o‘l‘fxg 12(1:):1‘7580..%7171
To— L1 T — X2 X1 — g T1 — T2 To — g T2 — X1
Lagrange-Interpolationsformel m
Die Lagrange-Polynome I; zu den Stiitzstellen (zg,%0), - -, (Zn, yn) bilden eine Basis der Polynome P,, und es
gilt:
" T —x;
= alls it lj(z) = k
pl) = 3 uise) mic ) = [[ =2
= YE)
\ J
Bemerkung 2.3.4: (Eigenschaften der Lagrange-Polynome)
1. Li(z;) =0 Vj#i 3. deg(l;) =n Vi
2. Li(xy) =1 Vi 4.3 0 ole(x)=1und >, l,(cm) () =0firm >0

Da eine Implementation, welche direkt auf den Lagrange-Polynomen basiert, eine Laufzeit von O (ng) hatte, suchte man
nach einer besseren Methode. Mit der baryzentrischen Interpolationsformel wird zuerst ein Pre-Computing auf Teilen
der Lagrange-Polynome durchgefiihrt, was dann dazu fiihrt, dass die Laufzeit auf O (nz) sinkt (O (n) fir die Auswertung
der Formel und O (nz) fiir die Berechnung der ;). Man berechnet die baryzentrischen Gewichte Ay folgendermassen:

=]

Ak

T — Ty

oder das ganze mithilfe von Numpy:

def barycentric_weights(x: np.ndarray) -> np.ndarray:

n = len(x)

# Initialize to zeros

barweight = np.ones(n)

for k in range(n):

# Vectorized differences between 1) and all xs

differences = x[k] - x

# Remove the k-th element (and handle edge cases for k=0 and k=n—1)
if k <n -1 and k > O:

diff_processed = np.concatenate((differences[:k], differences[(k + 1) :1))

barweight[k] = 1 / np.prod(diff_processed)
elif k ==

barweight[k] = 1 / np.prod(differences[1:])
else:

barweight[k] = 1 / np.prod(differences[:k])

return barweight
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Gleiche funktion, etwas kurzer:

def barycentric_weights(x: np.ndarray) -> np.ndarray:
len(x)
w = np.ones(n) # = barweight

n

# Compute the (non-inverted) product, avoiding case (z[i] - z[i]) = 0
for i in range(0, n, 1):

if (i-1 > 0): wl[0:(i-1)] *= (x[0:(i-1)] - x[il)

if (i+1 < n): wli+1:n] *= (x[i+1:n] - x[i])

# Invert all at once

return 1/w

Mit dem koénnen wir dann ein Polynom mit der baryzentrischen Interpolationsformel interpolieren:

Baryzentrische Interpolationsformel

k

Falls wir die Stitzstellen als (n + 1) Chebyshev-Abszissen x; = cos <7T) wahlen, so sind alle A\x gegeben durch
n

e = (=1)k6), mit 69 = &, = 0.5 und 6; = 1.

Mit anderen )y eroffnet die baryzentrische Formel einen Weg zur Verallgemeinerung der Interpolation mittels rationaler
Funktionen und ist entsprechend kein Polynom mehr.

Eine weitere Anwendung der Formel ist als Ausganspunkt fiir die Spektralmethode fiir Differenzialgleichungen.

def interp_barycentric(
data_point_x: np.ndarray,
data_point_y: np.ndarray,
barweight: np.ndarray,

x: np.ndarray

):

p_x = np.zeros_like(x)

n = data_point_x.shape[0]

for i in range(x.shape[0]):

# Separate sums to divide in the end
upper_sum = 0

lower_sum = O

for k in range(n):

frac = barweight[k] / (x[i] - data_point_x[k])
upper_sum += frac * data_point_y[k]

lower_sum += frac

p_x[i] = upper_sum / lower_sum

return p_x
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2.3.1 Fehler

Falls an den Stitzstellen x; durch beispielsweise ungenaue Messungen unprazise Werte g; haben, so entsteht logischer-
weise auch ein unprazises Polynom p(x). Verglichen in der Lagrange-Basis zum korrekten Interpolationspolynom p(x)
ergibt sich folgender Fehler:

n n
Ip(e) = B()] = 3 _(o = Gi)la(w)| < mmax Jys =Gl - D ()
=0 =0
Definition 2.3.5: (Lebesgue-Konstante) Zu den Stitzstellen xg, ..., z, im Intervall [a, b] ist sie definiert durch
A, = max l;i(x
o S o)

Satz 2.3.7: (Auswirkung von Messfehlern) Es gilt (wenn A,, die beste Lebesgue-Konstante fiir die Ungleichung ist):

max |p(z) — p(z)| < An max |y; — ¥l
z€[a,b] i=0,...,n

Sei f : [a,b] — R und p das Interpolationspolynom zu f. Seien x, ..., z, die Stitzstellen, dann gilt:
1f () = p(@)lec = e |f(z) = p(z)] < (1 + An) min e |f(z) — q(2)]

qEPn z€a,b

2n+1
Bemerkung 2.3.10: Fiir gleichmassig auf I verteilte Stiitzstellen gilt A,, ¥ ————
enlog(n)

Wichtig: Niemals gleichmaéssig verteilte Stiitzstellen verwenden fiir die Interpolation von Polynomen hohen
Grades

Prazisere Interpolationen lassen sich beispielsweise durch Unterteilen des Intervalls in kleinere Intervalle finden, indem
man fiir jedes Intervall ein separates Polynom berechnet, oder indem eine ideale Verteilung der Stiitzstellen wahlt (was
wiederum nicht einfach zu erzielen ist, siehe nichstes Kapitel).
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2.4 Chebyshev Interpolation

Chebyshev-Polynome Definition 2.4.1

Erster Art Zweiter Art

sin((n + 1) arccos(x))
sin(arccos(z))

T, (z) = cos(narccos(z)), =€ [-1,1] Un(z) = , ¢ €[-1,1]

T,.(z) scheint erst nicht ein Polynom zu sein, aber wir haben einen arccos in einem cos. Zudem:

Satz 2.4.3: (Eigenschaften) Das n-te Chebyshev-Polynom ist ein Polynom von Grad n und fir z € [—1,1] gilt:

1. To(z) = 1,Ty(2) =z, 3. T, (cos (E2)) = (=1)F firk=0,...,n
Toi1(x) = 22T, (z) — Thioq ()
2. |Th(z)| <1 4. T, (cos <(2k2:1)”)) =0fark=0,...,n—1

Definition 2.4.4: (Chebyshev-Knoten) Die (n+1) Chebyshev-Knoten zy, ..., x, im Intervall [—1, 1] sind die Nullstellen
von T,41(x)

Bemerkung 2.4.5: (Chebyshev-Knoten fiir beliebiges Intervall) Fir I = [a, b] sind die Chebyshev-Knoten:
1 2k +1
Tk :a+§(b—a) (cos (th) —|—1) k=0,...,n

Definition 2.4.6: (Chebyshev-Abszissen) Die (n — 1) Chebyshev-Abszissen z,...,z,_2 im Intervall [—1,1] sind die
Extrema des Chebyshev-Polynoms T}, (z) und zeitgleich die Nullstellen von U,,_1(z). Je nach Kontext nimmt man noch
die Grenzen des Intervalls (1 und —1) hinzu und hat dann (n + 1) Abszissen.

Die Baryzentrischen Gewichte sind dann viel einfacher zu berechnen: )\, = (—1)* (siche Bemerkung unterhalb der
Baryzentrischen Interpolationsformel, Kapitel 2.3)

Bemerkung 2.4.7: (Chebyshev-Abszissen fiir beliebiges Intervall) Fiir I = [a,b] sind die Chebyshev-Abszissen:

1 k
zr=a+ =(b—a) (cos(w)—&—l) k=0,...,n
2 n

Oder k =1,...,n — 1 bei ausgeschlossenen Endpunkten a und b

Bemerkung 2.4.8: Gegen die Rander des Intervalls werden die Chebyshev-Knoten dichter.

Orthogonalitit m

Die Chebyshev-Polynome sind orthogonal beziiglich des Skalarprodukts

1
(f.9) = / 1f<x>g<x>—ﬂl_7 de

Sie (T, . .., T},) sind zudem orthogonal beziiglich des diskreten Skalarprodukts im Raum der Polynome von Grad
<n

n

(f,9) = fla)g(a)

=0

wobei (zo, ..., z,) die Nullstellen von T}, 11 sind.
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2.4.1 Fehler

Was hat die neue Verteilung fiir einen Einfluss auf den Fehler?

Fehlerabschatzung
Unter allen (zo,...,x,) mit z; € R wird (wobei xy, die Nullstellen von T}, ; sind)
2k +1
zg[l?fl] [(x —xzg) ... (z—xp)] minimal fir x = cos (2(n—4—;1)7r>

Folglich sind also die Nullstellen der Chebyshev-Polynome T;, die bestmogliche Wahl fiir die Stiitzstellen. Da die Abszissen
mit FFT einfacher zu berechnen sind, werden diese oft bevorzugt berechnet. Dies, da die Nullstellen von T}, in den
Extrema von T3, enthalten sind, wahrend zudem zwischen zwei nebeneinanderliegenden Chebyshev-Abszissen jeweils
eine Nullstelle von Ty, liegt

2
Satz 2.4.13: (Lebesgue-Konstante) Fiir die Chebyshev-Interpolation: A,, = —log(n) fir n — oo
Y

Interpolationspolynom m

Das Interpolationspolynom p zu f mit Chebyshev-Knoten gleich der Nullstellen von T},14 ist gegeben durch

p(x) =co+aTi(x)+ ...+ cnTh(x)

wobei fiur die ¢ gilt:

2 - 20+ 17 20+ 17
=] = k — f k:]....
Ck n—l—l%f COS<n+12> cos< n—|—12> ur N )
= —_———
=x; (Knoten)
1 < 20+ 17 20+ 17
= = k = fur k=0
Ck n—i—llZ;f COS<n+12> cos( 12 ur
= —_——
=x; (Knoten)
N\ J

Fiir n > 15 berechnet man ¢, mit der Schnellen Fourier Transformation (FFT).
Bemerkung 2.4.16: (Laufzeit) Fir die Interpolation ergibt sich folgender Aufwand:

Direkte Berechnung der ¢, O ((n + 1)?) Operationen

Dividierte Differenzen o (”("2+1)> Operationen (zum Vergleich)

¢ mittels FFT O (nlog(n)) Operationen

Satz 2.4.17: (Clenshaw-Algorithmus) Seien dp, o = dpy1 = 0. Sei dy, = ¢ + (22)dgy1 — d12 fir k=mn,...,0
Dann gilt: p(x) = %(do—dg) und man kann das Interpolationspolynom p(z) mit Hilfe einer Riickwértsrekursion berechnen

Der Clenshaw-Algorithmus ist sehr stabil, auch wenn er mit (oft) unstabilen Rekursionen implementiert ist.

Auf der nachsten Seite findet sich eine saubere, effiziente Implementation des Clenshaw-Algorithmus:
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def clenshaw(coeffs: np.ndarray, x: np.ndarray):
n = len(coeffs) - 1
# initialise temporary variables
d_prev_prev, d_prev, d_curr = (
np.zeros_like(x),
np.zeros_like(x),
np.zeros_like(x),

for k in range(n, -1, -1): # backward recursion
d_curr = coeffs[k] + 2 * x * d_prev - d_prev_prev
d_prev_prev, d_prev = d_prev, d_curr

return d_prev - x * d_prev_prev

- kann man mit np.polynomial.chebyshev.chebfit ein polyfit fiir Chebyshev-Polynome durchfiihren und

mit np.polynomial . chebyshev.chebder die Ableitungen der Approximation berechnen. Die chebder-Funktion nimmt
die normalen Chebyshev-Koeffizienten als Argument, die man einfach mit folgendem Code berechnen kann:

def get_cheb_coeffs(abscissa: np.ndarray)
n = len(abscissa) - 1
dct_vals = scipy.fft.dct(abscissa, type=1)

coeffs = dct_vals / n
coeffs[0] /= 2
self.coeffs = coeffs
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3 Trigonometrische Interpolation

3.1 Fourier-Reihen

Eine Anwendung der (Schnellen) Fourier-Transformation (FFT) ist die Komprimierung eines Bildes und sie wird im
JPEG-Format verwendet.

Intuition: Wir haben eine Datenmenge D, die die y-Werte einer Frequenzmessung an N dquidistanten Punkten enthalt.

Die Fourier-Transformation dieser Datenmenge ergibt eine neue Datenmenge, nennen wir sie F, die, wenn geplottet,
einem Plot der Frequenzanalyse entsprechen. Dies ist auch korrekt, denn die Fourier-Transformation macht (verein-
facht) genau das; Sie macht einen Basiswechsel auf der Datenmenge D, so dass die Frequenz auf der z-Achse und die
“Haufigkeit" deren auf der y-Achse aufgetragen werden, oder formaler, so dass wir statt einer Funktion der Zeit eine
Funktion der Frequenz haben.

Das Inverse davon nimmt eine Funktion der Frequenz und transformiert diese in eine Funktion der Zeit

Definition 3.1.1: (Trigonometrisches Polynom von Grad < m) Die Funktion:

m
Pm(t) :=1t— > 7;¢*™" wobei y; € Cund t € R

j=—m

Bemerkung 3.1.2: p,,, : R — C ist periodisch mit Periode 1. Falls y_; = 7; fiir alle j, dann ist p,, reellwertig und p,,
kann folgendermassen dargestellt werden (ag = 279, a; = 2Re(y;) und b; = —2Im(~y;)):

Pm(t) = % + Z(aj cos(2mjt) + b; sin(27jt))
Jj=1

(Pt ) Definition 3.1.3

Wir definieren die L2-Funktionen auf dem Intervall (0, 1) als
L?(0,1) :== {f : (0,1) = C| || fllr2(0,1) < oo}

wihrend die L2-Norm (= Euklidische Norm, also die normale Vektornorm) auf (0,1) durch das Skalarprodukt

T Py = / T@)f(z) do

iber || fllz2(0,1) = \/{f, f)£2(0,1) induziert wird
\ J

Bemerkung 3.1.4: L%(a,b) lasst sich analog definieren mit

b

(0, P 2oy = / 9@/ () dz

a

— - a>/0 e FG=a)bfla+ (b-a)t) dt

_T
In Anwendungen findet sich oft das Intervall [—Z, Z]. Dann verwandeln sich die Integrale in die Form %fg (L) dt
und exp(2wijt) durch exp(iz%t) ersetzt wird.

Bemerkung 3.1.6: Die Funktionen ¢ (z) = exp(2mikz) sind orthogonal beziiglich des L?(0, 1)-Skalarprodukts, bilden
also eine Basis fiir den Unterraum der trigonometrischen polynome.

Definition 3.1.7: Eine Funktion f ist der L?-Grenzwert von Funktionenfolgen f,, € L%(0,1), wenn fir n — oo gilt,
dass [|f — fallz2(0,1) = 0
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Stz 3.1.0 I

Jede Funktion f € L?(0,1) ist der Grenzwert ihrer Fourier-Reihe:

=3 Flkyermivt

k=—o0

wobei die Fourier-Koeffizienten
1
f(k) :/ fe 2™  dt ke
0
definiert sind. Es gilt die Parseval’sche Gleichung:

> 1F®)E = 1£13 200
k=—oc0

. J

Bemerkung 3.1.9: Oder viel einfacher und kiirzer: Die Funktionen ¢y (x) bilden eine vollstandige Orthonormalbasis in
L2(0,1).

o~

Bemerkung 3.1.14: Die Parseval'sche Gleichung beschreibt einfach gesagt einen “schnellen” Abfall der f(k). Genauer
1
vk
Summe berechnet werden kann (nicht nur als Integral). Wenn wir die Fourier-Reihe nach ¢ ableiten, erhalten wir

gesagt, klingen die Koeffizienten schneller als ab. Sie sagt zudem aus, dass die L2-Norm der Funktion aus einer

f'(t) = i 2mik f(k)e>m ikt

k=—o0

Satz 3.1.15 I

Seien f und f’ integrierbar auf (0,1), dann gilt f'(k) = 2wikf(k) fir k € Z.
Falls die Operationen erlaubt sind, dann gilt zudem:

Flk) und ||, = (2m)>™ Y K2 |F(k)
k=—0c0

\ J

£ = (2mik)

-~

1
Satz 3.1.16: Wenn / | £ (1)] dt < oo, dannist f(k) = O (k™)
0

Falls die Funktion jedoch nicht glatt ist, dann entstehen Uberschwingungen an den Sprungstellen, die niher und naher
an die Spriinge herankommen, aber nicht kleiner werden, wenn wir mehr Terme der Fourier-Reihe aufsummieren. Das
Phanomen wird das Gibbs-Phinomen gennant und wir haben L?-Konvergenz, aber keine punktweise Konvergenz an
der Sprungstelle.

Bemerkung 3.1.17: Diese Uberschwingungen entstehen durch die Definition der Fourier-Reihe und sind in der un-
tenstehenden Abbildung 3.1.18 aus dem Skript sehr gut ersichtlich. Die dargestellte Funktion ist die Fourier-Reihe der
charakteristischen Funktion des Intervalls [a, b] C]0, 1[, welche sich folgendermassen analytisch berechnen l3sst:

1 B in(kd) .
b—a+ — E e_lkcism( )622”’“, t€[0,1]
T k
k#0

Mit ¢ =7(a+b) und d = w(b — a)

Bemerkung 3.1.19: Meist ist es nicht méglich (oder nicht sinnvoll) die Fourier-Koeffizienten analytisch zu berechnen,

weshalb man wieder zur Numerik und der Trapezformel greift, die folgendermassen definiert ist fur t; = % wobei

[=0,1...,N —1und N die Anzahl der Intervalle ist:

N—

F(k) = 5 3 fleye > w k)
=

=
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n =10 (2n+1 summation terms) n =70 (2n+1 summation terms)

1.2 1.
1.0 /\ /\ 1 1.0 Vﬂv/\ AVAU
0.8 1 0.8f
06 1 0.6}
04f 1 0.4f
0.2 1 0.2F
0.0 0.0 A A
\V, |V h '
~93% 0.2 0.4 0.6 0.8 1.0 %30 0.2 0.4 0.6 0.8 1.0

Abbildung 3.1.18: Uberschwingungen der Fourier-Reihe der charakteristischen Funktion des Intervalls [a, b] C]0, 1[. (Ab-
bildung aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 69)

3.2 Diskrete Fourier Transformation
3.2.1 Motivation

Nutzen wir die Trapezregel um approximativ die Fourierkoeffizienten fN(k) auf dquidistanten Punkten [; = % 0<i<
N — 1) zu bestimmen, erhalten wir tatsachlich ein Polynom py_; welches die Interpolationsbedingung erfiillt:

w|z

-1

pN—l(t) _ fAN(k)eQWikt
k

|
v|Z

Der Beweis hierfiir ist im Skript auf p. 71. Die N-te Einheitswurzel wird hier definiert:

Definition 3.2.1: (N-te Einheitswurzel) wy := exp(=3£%)

Bemerkung 3.2.2: (Eigenschaften von wy )

kT W =il A -1 Ty [y o=
k=
VEeZteR: withV =wh wh/? = -1 = 0, sonst

3.2.2 Konstruktion

Wir definieren die Trigonometrische Basis. Den Basiswechsel zu dieser Basis nennen wir diskrete Fourier Transformation.

Definition 3.2.3: (Trigonometrische Basis)

0-k
WN
wlk
. . . N . N N
{vo,...,un_1} ist eine Basis von C, wobei v}, = ) eC
(N—1)-k
Wy
Die symmetrische, nicht hermitesche Matrix V = [vg, ... ,vx_1] ist eine orthogonale Basis fir CV: VAV = N . I'y.

Ebenfalls ist V' die Basiswechsel Matrix Trigonometrische Basis (z) + Standardbasis (y).
An Hand von V' definieren wir gleich die Fourier-Matrix Fiy.
1 1
=V =Vily=—vliy=—_F
) z = z Y N Y N <N )
=VH

Der Eintrag y; enstspricht einem Glied der Fourier-Reihe ausgewertet in % €[0,1).
Die diskreten Fourier-Koeffizienten ~;, sind eine Umsortierung der Koeffizienten der trigonometrischen Basis.
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Wik
1-k
N-1 N/2-1 _
Skt Y e
w = LW = - exp(—
y= Z YkCk+1 = Z 2RV = Z 2 N L P kWN e Vi CXPUy
k=0 k=0 k=0 : = =—N/2
— N N
y in Komponenten in Trig. Basis EVN_l)'k wobei e = 2k 0<k< 5 1
2+ N, =5 <k<0
Definition 3.2.4: (Fourier-Matrix)
0 0 0
WJOV w{lv ... (;)VNI
WN O‘)N DR (;)(J}/vv 1)
0 2 - o N-—1
H H k NxN
Fn:=V" =[vg,...,un_1]" = |YN WN Wy :[w;\/]jkzogc x
0 N—-1 (N-1)2
wN wN DY wN

Die skalierte Fourier-Matrix ﬁFN hat einige besondere Eigenschaften.

Satz 3.2.6: Die skalierte Fourier-Matrix \/—%FN ist unitar: Fy' = LR =LFy

Bemerkung 3.2.7: (Eigenwerte von \/—INFN) Die X von \/%FN liegen in {1,—1,4, —i}.
Die diskrete Fourier-Transformation ist nun einfach die Anwendung der Basiswechsel-Matrix Fly.

Definition 3.2.5:] (Diskrete Fourier-Transformation) Fn : C — C s.d. Fy(y) = Fny
N-1 .
Firc=Fn(y) gilt: ¢ = Z ijf\';
§=0

c lasst sich als Reprasentation von y im Frequenzbereich interpetieren. Durch die DFT kdnnen wir nun jederzeit zwischen
der normalen und der Frequenz-perspektive wechseln. Das erméglicht einige interessante Anwendungen.

3.2.3 DFT in Numpy

Sei y in der Standardbasis, und ¢ = Fn(y), also y in der trig. Basis.

1
c=Fy xy=f£ft(y) (DFT in numpy)y = NFJI\?C = ifft(c) (Inverse DFT in numpy)

Um zur urspriinglichen Darstellung des trig. Polynoms zuriick zu kommen, miissen wir die Koeffizienten umsortieren:
Seien z = + Fyy und ¢ = fft.fftshift(z).

N/2-1

f(z) ~ Z Cp - e2mike

k=—N/2

Form des trig. Polynoms

Bemerkung 3.2.13: Man kann mit dieser Approximation einfach die L2-Norm und Ableitungen berechnen:

2

N/2-1 N/2—1

112~ | S G-kl = 3 Gl = 2l e -
k=—N/2 k=—N/2 F)~ (2mik) i - e
E ke >

k=—N/2
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3.2.4 DFT & Lineare Algebra

Definition 3.2.25: (Zirkulant) Fiir einen vektor ¢ € RN hat der Zirkulant C € RV*Y die Form:

Co CN-1 CN-2 - C3 C2 C1
C1 Co CN—-1 =-*° C4 C3 C2 0 0 0 1
Co C1 Co *++ Cjy Cy4 C3 1 0 0 0
C = SNy = :
CN-3 CN—4 CN_5 +** Cg CN—-1 CN—2 0 0 0 0
CN—2 CN-3 CN_4 -+ C €y CN_1 0 0 10
|CN—-1 CN-2 CN-3 -°° C2 C1 co |

Die Shift Matrix Sy ist der Zirkulant fiir ¢ = e5. Sy ist eine Permutationsmatrix, die alle Eintrage nach vorne schiebt.

To TN-1 ITN-1 To
T Zo T Zo T
SN . = . SN . =
ITN-1 ITN-—-2 IN-—2 ITN-1

Die Shift-Matrix hat einen speziellen Bezug zu den Spaltenvektoren v von Fiy, und auch allen anderen Zirkulanten C.

Bemerkung 3.2.26: Der k-te Fourier-Vektor vy, ist ein Eigenvektor von Sy zu A; = €27 .

Satz 3.2.27: (Diagonalisierung von Zirkulanten) Die Eigenvektoren von Sy diagonalisieren jeden Zirkulanten C', und
sind d.h. auch die Eigenvektoren von C. Die Eigenwerte erhalt man aus p(z) = co2" + ... +ey_12V L.

Eine Operation mit vielen Anwendungen ist die Faltung. Sie hat einige Beziehungen zur Fourier-Transformation.

Definition 3.2.28: (Faltung) a x b := (ck)kez = Z anb_n, wobei (ag)rez, (br)rez unendliche Folgen sind.

n—=—oo

Die Faltung von a = [ag,...,an_1]T,b = [bo,...,bn_1]" ist leicht: Man erweitert beide Vektoren mit Nullen.

Definition 3.2.29: (Zyklische Faltung) Fiir N-periodische Folgen oder Vektoren der Lange N:

N-1 N-1
c=a®b s.d. g anbi—n =N E bnGn_i
n=0 n=0

Bemerkung 3.2.32: Zyklische Faltungen von Vektoren kann man mit Zirkulanten berechnen.

ag e anN_1
c=a®b=Ab= : : b

anN_1 ao

Zirkulant von a

Bemerkung 3.2.30: Eine Multiplikation von Polynomen g, h entspricht einer Faltung im Frequenzbereich.

Fn( w )= Fn(g)- Fn(h)

Standard Basis Trigonometrische Basis

T
Im Fall von T-periodischen Funktionen gilt: (g * h)(x) = %/ g(t)h(z —1).
0

Bemerkung 3.2.31: Da Fly jeden Zirkulant C' diagonalisiert (Satz 3.4.27), gilt sogar:

c=a®b=Ab= Fy'p(D)Fnb (p(D) ist Diagonalmatrix der A von C)

Man erhilt so letzendlich das Faltungs-Theorem: Die Fy-Transformierte einer Faltung ist genau das gleiche wie die
Multiplikation zweier Fy-Transormierten. Da die DFT in O(nlog(n)) (Kap. 3.3) geht, gilt dies nun auch fiir die Faltung.

FNC = diag(FNa)FNb
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3.3 Schnelle Fourier Transformation

Da es viele Anwendungen fiir die Fourier-Transformation gibt, ist ein Algorithmus mit guter Laufzeit sehr wichtig.
Wahrend eine naive version des DFT-Algorithmus eine Laufzeit von O (N2) hat, so hat der Fast Fourier Transform
Algorithmus nur eine Laufzeit von O (N log(N)), was bei N = 1024 bereits eine Laufzeitsverbesserung von 100x mit
sich bringt (O (10000) vs O (1000000) Operationen)! Die untenstehende Abbildung 3.3.3 findet sich, zusammen mit
dem Code, mit der sie produziert wurde im Skript auf Seite 86-88

) fft runtimes

10

— naive way

ot T matrix way ]
— numpy way

N

._.
On

run time [s]

._1
on

10

10°

10 0 500 1000 1500 2000 2500
vector length n

Abbildung 3.3.3: Vergleich der Laufzeit von verschiedenen Fourier-Transformations-Algorithmen. (Abbildung 3.3.3 aus
dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 88)

Der hier besprochene Cooley-Tukey-Algorithmus wurde urspriinglich von Gauss 1805 entdeckt, dann vergessen und
schliesslich 1965 von Cooley und Tukey wiederentdeckt. Der Algorithmus verwendet einen “Divide and Conquer” Ap-
proach, also ist logischerweise die Idee, dass man die Berechnung einer DFT der Lange n auf die Berechnung vieler DFTs
kleinerer Langen zuriickfiihren kann.

Fir den Algorithmus miissen folgende vier Optionen betrachtet werden:
| Vektoren der Lange N = 2m = Laufzeit gut
Il Vektoren der Lange N = 2 — Laufzeit ideal
[1l Vektoren der Lange N = pq mit p,q € Z —> Etwas langsamer
IV Vektoren der Lange N, mit N prim = ca. O (N2), besonders fiir N gross

Wir formen die Fourier-Transformation um fiir den ersten Fall (N = 2m):

N-1
€k = Z yje” Rk
3=0
m—1 m—1
=Y e MR LY e WO
j=0 j=0
m—1

-1
—2mi g _2mp mj : — 2=t ik
= yzje N2 +e N y2j+1e N2
- =0

Der zweite Fall ist einfach eine rekursive Weiterfiihrung des ersten Falls, bei welchem dann das m kontinuierlich weiter
dividiert wird bis zum Trivialfall mit einer 1 x 1-Matrix.

- gibt es die Funktionen np.fft.fft (Vorwirts FFT), np.fft.ifft (Rickwirts FFT). scipy.fft liefert

dieselben Funktionen und sie sind oft etwas schneller als die von numpy
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3.4 Trigonometrische Interpolation
3.4.1 Von Approximation zur Interpolation

Wir erinnern uns daran, dass wir die Fourier-Approximation durch den Abbruch der unendlichen Fourier-Reihe erhalten,
oder in anderen Worten, wir verkleinern die Limiten der Summe.

Bemerkung 3.4.1: (DFT mit N = 2n Koeffizienten an Punkten % firl =0,1,...,N —1)

Der Shift ist hier gegeben durch (fiir k > 0 ist 7, = fn (k) und fiir k < 0 ist v, = fn (N + k)

n—1 n—1 —1
fN—l(x) _ § '7k€2ﬂlkx _ § ,yke%rzkm 4 E ,ykeQkar
k=0

k=—n k=—n

RS I\ N° wik(e- )
< fr-1(z) N Z f " Ze

j=0 k=—n

Wenn wir die Funktion nun an der Stelle % auswerten so erhalten wir:

poo (5) ==t (%) o

was aufgrund der Orthogonalitat der diskreten Fourier-Vektoren funktioniert, welche besagt, dass Z wf\,(jfl) =0, fur

k=—n
alle j # 1. Fir j =1 ergibt die Summe N.
Dies heisst also, dass die Fourier-Approximation die Interpolationsbedingungen an den Punkten % erfullt, also kénnen

wir die Losung der Interpolationsaufgabe py_1 (%) =f (%) fi=0,1,...,N —1im Raum

TN:Span{e2ﬂijt|j:_ \‘]\[2_1J ’7\‘];[J}

folgendermassen finden kénnen:
(1) Mittels Gleichungssystem Y° . ~;e*™" = f(t;) fir I = 0,..., N — 1. Operationen: O (N?)

(2) Mittels FFT in O (N log(N)) Operationen, aber nur falls die Punkte 4quidistant sind, also ¢, = . Dann ist die
Matrix des obigen Gleichungssystems Fgl

Unten findet sich Python code der mit den unterschiedlichen Methoden die Koeffizienten des Trigonometrischen Polynoms
bestimmt.

def get_coeff_trig_poly(t: np.ndarray, y: np.ndarray):
N = y.shape[0]
if N % 2 == 1:

n=(N-1.0) /2.0
M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n + 1)))
else:
n=N/2.0
M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n)))
¢ = np.linalg.solve(M, y)
return c
N = 2xx12

t = np.linspace(0, 1, N, endpoint=False)

y = np.random.rand(N)

direct = get_coeff_trig_poly(t, y)

using fft = np.fft.fftshift(ap.fft.£ft(y) / N)
using_ifft = np.conj(np.fft.fftshift(np.fft.ifft(y)))
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3.4.2 Zero-Padding-Auswertung

Ein trigonometrisches Polynom py_1(t) kann effizient an den &quidistanten Punkten ﬁ mit M > N ausgewertet werden,
fur k =0,..., M — 1. Dazu muss das Polynom py_1 € Tn C Tas in der trigonometrischen Basis Tjs neugeschrieben

werden, in dem man Zero-Padding verwendet, also Nullen im Koeffizientenvektor an den Stellen héheren Frequenzen
einfugt.

TODO: Insert cleaned up code from Page 95 (part of exercises)

Die folgende Funktion wird im Script evaliptrig genannt.

def evaluate_trigonometric_interpolation_polynomial(y: np.ndarray, N: int):
n = len(y)
if (n % 2) == 0:
c = np.fft.ifft(y) # Fourier coefficients
a = np.zeros(N, dtype=complex)

# Zero padding
al: n // 2] =cl: n// 2]
a[N -n // 2 :1=cln//2:]
return np.fft.fft(a)
else:
raise ValueError("odd length")
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3.5 Fehlerabschatzungen

Konvergenz Definition 3.5.1
Algebraische Konvergenz Exponentielle Konvergenz
Wenn der Fehler E(n) = O (%) mit p > 0 ist Wenn der Fehler E(n) = O (¢") mit0 < ¢ <1

Beispiel: Zur Fehlerbetrachtung verwenden wir drei Funktionen f : [0,1] — R, welche wir mit trigonometrischer

Interpolation an den Punkten £
0 far |t7 %| >
1 fir [t—4] <

~ approximieren:

(1) Stufenfunktion (periodische Fortsetzung von f) f:[0,1] — R mit f(¢)

el L

1
(I1) Periodische, glatte Funktion h: R — R mit h(t) =

1+ 1sin(2nt)
(1) Hutfunktion (periodische Fortsetzung von h) g : [0,1] — R mit g(t) = |t — |

Die untenstehende Abbildung 3.5.2 beinhaltet einen Plot, auf dem die Konvergenz in Abhéngigkeit des Grades des
Interpolationspolynoms aufgetragen ist.

m
o
L
/ |
|
- /
|
|
|
|
|
.

B
:qc_, 10° \\ 1
@ —#1
S ——#
8 10t ——#3|1
o
9
£ 10" \ —
- \
\
10‘2 \\ i
\
\
107 \\ 1
. . L N L
2 4 8 16 2 64 128
n+ 1

Abbildung 3.5.2: Interpolierungsfehler der Beispiele. Algebraische Konvergenz fiir (1) und (lll), exponentielle fiir (I1).
(Abbildung 3.5.2 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 96)

Auch hier tritt das Gibbs-Phidnomen wieder an den Sprungstellen von f(t) auf. Dies verursacht die Verlangsamung der
Konvergenz in den Stellen, in welchen die Funktion nicht glatt ist.
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1
Beispiel 3.5.4: Sei fir a € [0,1) f(t) = —————————" Die Konvergenz ist exponentiell in n und je kleiner «, desto
/1 — asin(27t)
schneller ist sie. In der untenstehenden Abbildung 3.5.5 sind einige Beispiele aufgetragen:

o
]
T

B

Interpolationsfehlernorm
>

<
S

14|

16 T T | ! 1 1
0 10 20 30 40 50 60 70 80 90 100
Polynomgrad n

10°

Abbildung 3.5.5: Fehler bei der trigonometrischen Interpolation. (Abbildung 3.5.5 aus dem Vorlesungsdokument von
Prof. V. Gradinaru, Seite 98)

Sz 356

Der k-te Fourier-Koeffizient des N-ten trigonometrischen Interpolationspolynoms unterscheidet sich vom k-ten
Fourier-Koeffizienten von f gerade um die Summe aller Fourier-Koeffizienten, die um ganze Vielfache von N
vom k-ten Fourier-Koeffizienten verschoben sind:

pn(k) = f(k) = > Fk+jN)
JH#0EZ

\_ J
N
2

~

Korollar 3.5.7: Fir f € CP([0,1]) mit p > 1 und f 1-periodisch, dann gilt: |py (k) — f(k)] = O ((N~P)) firr |k| <

Das heisst also, dass die Fourier-Koeffizienten von f bei kleinen Frequenzen (hier |k| < %) sehr gut durch die Fourier-
Koeffizienten des trigonometrischen Interpolationspolynoms approximiert werden.

Fehler der trigonometrischen Interpolation m

Falls f 1-periodisch ist und die Reihe ), _, |f(k)| absolut konvergiert, dann ist der Approximationsfehler definiert
als:
pn(z) = f(=)| <2 > [f(k)] VzeR
|k|> &
\ J

Da durch diesen Satz die obere Schranke fiir den Approximationsfehler durch die schwer approximierbaren Fourier-

Koeffizienten f(k) gegeben ist, heisst das folgendes fiir die Approximation von Polynomen von Grad deg(P(x)) < n fir
unser Approximationspolynom von Grad deg(Py(z)) = n:

~

Korollar 3.5.9: (Abtasttheorem) Sei f 1-periodisch mit maximaler Frequenz m, also f(k) = 0 V|k| > m. Falls
N > 2m, dann gilt py(z) = f(z) Yz

Beispiel: Ein Beispiel aus der Musik: Wir haben ein analoges Signal und wollen es digitalisieren. Wir messen die
Spannungswerte in dquidistanten Punkten. Falls wir jedoch die Frequenz der Messung zu niedrig wahlen, so kann ein
total falsches Interpolationspolynom entstehen, wie in der untenstehenden Abbildung 3.5.10 zu sehen: Fir unser
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0.0 0.2 0.4 0.6 08 10 00 0.2 0.4 0.6 0.8 10

n=3~§ n =16
v | I 14114 - :“3"3—, '
0.5 ‘ ‘ | 0.5
—osH| | | -05
Nitl JIL
n = 36 n = 38

n = 32
Abbildung 3.5.10: Aliasing fir f(t) = cos(27 - 19¢). (Abbildung 3.5.10 aus dem Vorlesungsdokument von Prof. V.
Gradinaru, Seite 100)
Signal bedeutet das also, dass wir eine Art Verzerrung auf der Aufnahme haben, oder fiir Autorader, dass es so scheint,

als wiirden sich die Rader riickwérts drehen.

Fehlerabschatzung

Sei f(¥) € L?(0,1) Vk € N, dann gilt:

o0
1f = (Pllz201) < VIF N "F 0| 12(0,1) wobei ¢ =2 (20 —1)7>*

=1

Also, je mehr Ableitungen in L?(0, 1) liegen, desto kleiner ist der Fehler.

Im Skript auf Seiten 101 und 102 gibt es einige Abbildungen die eine gewisse Intuition hinter der Approximation und
den entstandenen Fehlern gibt.
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3.6 DFT und Chebyshev-Interpolation

Mithilfe der DFT kénnen giinstig und einfach die Chebyshev-Koeffizienten (cj) berechnet werden. Die Idee basiert auf
dem Satz 2.4.16, durch welchen schon schnell klar wird, dass es eine Verbindung zwischen den Fourier-Koeffizienten und
Chebyshev-Koeffizienten gibt.

Die Chebyshev-Knoten sind folgendermassen definiert:

2k+1
ty = —_— k=0,...
k COS(Z(TL+1)7T>7 N

Mit den Hilfsfunktionen g : [-1,1] — C, s — f(cos(27s)) und ¢ : [-1,1] = C, s — p(cos(27s)), kdnnen wir folgendes
mit der Interpolationsbedingung f(tx) = p(tx) tun:

=) o (ALY < (L)

Wir wenden nun die Translation s* = s + ﬁ an, die Hilfsfunktionen sind dann g x (s) = g(s*) und ¢*(s) = q(s*)

und man kann zeigen (Seite 100 im Skript), dass ¢* das trigonometrische Interpolationspolynom von ¢* ist, also kann
man eine Chebyshev-Interpolation durch eine DFT durchfiihren. Folglich tGbertragt sich auch die Fehlerabschatzung. Die

Interpolationsbedingungen sind folgendermassen definiert:

< k 1 > Yk firk=0,...,n

q + =z = .

2(n+1)  4(n+1) Yonti—k furk=mn,....2n+1
Um das ganze zu implementieren ist eine andere Darstellung niitzlich:

2k+1

COS(Q’]T&]C) mit é-k = m

Durch Umformungen (Seite 101 im Skript) erhalten wir:

2 :ZCjexp(%rijgl) mitgl: o 12 fir 0,1,...,2n+1

2mij ..
Cj:CjeXp <4(n—|—1)> furjz—n,...,—l,(),l,...,n

Und mit weitern Umformungen erhalten wir

El, {GXP (;Tll) Zl] = [Ck—n)

Auf Seite 102 im Skript findet sich auch eine effiziente Implementation dessen.

Bemerkung 3.6.2: Die Formel in Satz 2.4.16 (und in der eben erwdhnten Implementierung) sind nichts anderes als

eine Version der DCT (Discrete Cosine Transform). Dies ist eine giinstigere, aber beschrénktere Variante der DFT, mit
der nur reellwertige, gerade Funktionen interpoliert werden konnen.

- benutzen wir scipy.fft.dct. Dazu miissen die Mesungen in den Punkten x; = cos ((j + 0.5) - &)

Bemerkung 3.6.3: Die Chebyshev-Koeffizienten c¢; kénnen folgendermassen berechnet werden:
1 27

“=z) (cos(p)) cos(jp) dp

Eine weitere effiziente Interpolation findet sich auf Seiten 104 - 105 im Skript
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4 Stiickweise Polynomiale Interpolation

4.1 Stiickweise Lineare Interpolation

Globale Interpolation (also Interpolation auf dem ganzen Intervall | — 0o, oo[) funktioniert nur dann gut, wenn:
(a) die gegebenen Interpolationspunkte als Chebyshev-Knoten oder -Abszissen verwendet werden kénnen
(b) die Funktion glatt ist

Es missen beide obige Eigenschaften zutreffen. Eine Idee um die Einschrankungen zu reduzieren oder komplett zu
entfernen ist es, das Intervall zu unterteilen, oder formaler, das Intervall I = [a, b] in viele kleinere Intervalle zu zerlegen.

Wir haben dann ein Polynom vom Grad n auf jedem Teilintervall mit n + 1 Punkten, was den Fehler verringert:

hn+1
[f(z) = s(z)] < m\lf("“)lloo

Seien N + 1 Messpunkte gegeben. Wir verwenden sie als Knoten (im Englischen breakpoints gennant. Die Knoten sind
also nicht dasselbe wie in den vorigen Kapiteln, es gibt aber keinen wirklich sinnvollen Namen im Deutschen) diese
N + 1 Messpunkte. Die Knoten dienen Paarweise als Abgrenzung der neuen, kleinen Intervalle, die wir erstellt haben.
Die linearen Interpolanten fiir jedes Intervall sind (mit h; = z; — z,;_1):

i — X r—Tj1
J J
+yj

si(x) = yj—1 p fur o € [xj_1,2;]
Lj
Wie man nun zu dieser Formel kommt: Sei x(t) =t Vt € [0,1]. Die Funktion f(t) = yox(1 —¢) + y1x(t) hat also die
Interpolationseigenschaften f(0) = yo und f(1) = y1 und ist linear in ¢. Die Interpolation s;(x) auf [z;_1,x;] entsteht

dann also aus f mit Variablenwechsel ¢ = 17;575’1 €[0,1] > z = x;_1 + hjt, also gilt:

Ti;— X T—Ti_ .
sj(x) =Yj—1X ( Jh4 ) +yix ( h-j 1) firx € [acjfl,xj}
j J

Dies ist eine lokale Interpolation und s; ist 0 ausser im definierten Intervall. Die Idee des Variablenwechsel ist es, das
Intervall, auf welchem die Funktion definiert ist von [0, 1] nach [z;_1,z;] zu verschieben.

4.2 Kubische Hermite-Interpolation

Die Kubische Hermite-Interpolation (CHIP) produziert eine auf [a,b] stetig differenzierbare Funktion, welche auf den
Teilintervallen [x;_1, x;] jeweils ein Polynom von Grad 3 ist. Wichtige Eigenschaft von Polynomen n-ten Grades ist, dass
sie n + 1 Freiheitsgrade haben (da sie n + 1 freie Variabeln enthalten).

Nutzen wir wieder das Konzept von oben, und wihlen eine Funktion o(t) = t2(3 — 2t) fir ¢ € [0,1], so erfiillt f(t) =
yop(1 — t) + y1o(t) wieder unsere Interpolationseigenschaften f(0) = yo und f(1) = y1 und wir vollziehen denselben
Variablenwechsel wie oben. So erhalten wir:

Ti—T T —Ti_ 3
pi(@) =yj-19 ( oy ) +yj¢ (}171> fiir 2 € [z-1, 7]
J J

Wir haben folgende Ableitungen: ¢'(t) = 6¢(1 —t), also sind die Nullstellen dieser Funktion bei ¢ € {0, 1}, weshalb auch
die Ableitungen von p; an den Stellen x;_; und x; verschwinden.

Fiir die Ableitungen definieren wir eine zweite Funktion 1(t) = t>(t—1), welche offensichtlich die Nullstellen an ¢ € {0, 1}
hat und deren Ableitung ¢’(t) = t(3t — 2). Mit demselben Variablenwechsel miissen wir die Kettenregel beachten:

T —Xi_ Ti—2x }
qj(gj) = Cj—lhjw <h]1> — thjw < jh, ) furz € [33]‘_1,1']‘]
J J

Die Interpolationsfunktion ist dann einfach die Summe s;(z) = p;(z) + ¢;(z) fir z € [z;_1, 2]

- verwendet man scipy.interpolate.AkimalDInterpolator oder PchipInterpolator, welcher “former-

haltender” ist, also wenn eine Funktion lokal monoton ist, so ist der Interpolant dort auch monoton. Bei anderen
Interpolationsmethoden ist dies nicht garantiert (so auch nicht beim AkimalDInterpolator)

Wenn man den Parameter method="makima" bei AkimalDInterpolator mitgibt, wird eine neuere modifizierte Variante davon ausgefiihrt
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Fehler der CHIP m

Sei f € C*[a,b] und s der stiickweise CHIP mit exakten Werten der Ableitungen s'(x;) = f'(x;), s(z;) = f(z;)
fir j =0,..., N und sei s; ein Polynom vom Grad 3, fir j =1,..., N. Dann gilt:

1,
159 = 5Bl < R o

mit h = Inan:L.__,N(JCj — $j_1) und k = 0, 1

\ J

4.3 Splines

Raum der Splines Definition 4.3.1

Sei [a,b] C R ein Intervall, sei G = {a =29 < z1 < ... <axy =b} und sei d > 1 € N. Die Menge

Sag={s € C%a,b)], 8j '= 8|[z;_1,z,]| ISt €in polynom von Grad héchstens d}

ist die Menge aller auf [a, b] (d — 1) mal stetig ableitbaren Funktionen, die auf G aus stiickweisen Polynomen von

Grad hochtens d bestehen und wir der Raum der Splines vom Grad d, oder der Ordnung (d + 1) genannt
\_ J

Bemerkung 4.3.2: Obige Definition ist undefiniert fiir d = 0, aber S ¢ kann als die Menge der stiickweise Konstanten
Funktionen betrachtet werden. Im Vergleich zu den Kubischen Hermite-Interpolanten sind die Kubischen-Splines (fur
d = 3) zweimal Ableitbar statt nur einmal

Bemerkung 4.3.3: dim(S;¢) = N + d. Es werden oft kubische Splines in Anwendungen verwendet, also ist
dim(Sq,g) = N + 3, wir haben aber nur NV + 1 Funktionswerte, also beleiben noch zwei Freiheitsgrade iibrig.

Dies bedeutet, dass wir ein underdeterminiertes lineares Gleichungssystem haben fiir h; = 2; — 2;_1:

[(bo a1 b1 O ... .. 0 7 co _ . s _
0 bl as b2 C1 3<,1h%,0+K2hg1)
0 . . .
an—2 bn_2 0 3 (yN712—nyz 4 yN_2N—1)
_O O bN_2 anN-—1 bN—l_ CJCV];1 - thl hN n

Wobei im Resultatvektor Eintrage der Form

o (i —hgljfl N ij;LIQ_ Yj
J j+1
enthalten sind und mit a; := # + ﬁ und b, := ﬁ fir j=0,1,...,N —1
J J J

Wir miissen also zwei weitere Gleichungen finden (oder zwei Freiheitsgrade eliminieren).

Definition 4.3.4: (Vollstindige kubische Spline-Interpolation) Falls wir die zusatzlichen Bedingungen s’(z¢) = ¢o und
s'(xn) = cy mit gegebenen ¢g und ¢y haben. Sie ist auch bekannt als clamped cubic spline. In der obigen Matrix
kénnen dann die erste und letzte Spalte weggelassen werden.

Definition 4.3.5: (Natirliche kubische Spline-Interpolation) Falls wir die zusatzlichen Bedingungen s”(xo) = 0 und

s”(zn) = 0 haben. Dann fiigen wir obigem SLE zwei Zeilen hinzu (1. und (N + 1)-te), die 2,1,0,0,... = *=¥ und
0,...,0,1,2 = % Die Matrix ist nun also positive-definite und symmetrisch

Definition 4.3.6: (Periodische  kubische  Spline- ap by 0 ... 0 bo
Interpolation) Falls wir die zusatzlichen Bedingungen by as Do 0

§'(xo) = §'(xn) und s”(xg) = s”(xzn) haben. Dies macht

nur Sinn, wenn yy = yu, also nehmen wir das an und wir A= 10
haben eine Spalte weniger und eine Reihe mehr, also ist die 0 . an-1 byi
Systemmatrix rechts b 0 ... 0 by u
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Bemerkung 4.3.7: Die SLE konnen in O (n) geldst werden.

Bemerkung 4.3.8: Mit der “not-a-knot”-Bedingung s’ ist stetig in 21 und xx_1 braucht man mindestens 4 Knoten.
Da wir kubische Splines betrachten erzwing die Bedingung dass ein Polynom nur in den ersten beiden und ein anderes
in den letzten beiden Subintervallen erscheint, also gilt s; = so und sy_1 = sy

Bemerkung 4.3.9: Der natiirliche Spline minimiert die Gesamtkriimmung des Funktionsgraphen:

b b
/ 1§ ()[? da < / g" (@) da

fur alle Funktionen zweimal stetig differenzierbaren Funktionen g, fiir welche g(z;) = y; gilt fir jedes j =0,..., N

Interpolationsfehler vollstandiger kubischer Splines

Wenn f € C*[a,b] und s der vollstindige kubische Spline-Interpolation von f auf einem &quidistantem Gitter
mit Gitterweite h ist, dann ist der Fehler fir £ =0,1,2, 3:

5 _
1F® = s®)]| 10 < @h‘l ILED oo

Zur Erinnerung, C* ist die Klasse aller vier (oder mehr) mal ableitbaren Funktionen.

- verwendet scipy.interpolate.CubicSpline aktuell die “not-a-knot”-Bedingung. Es ist méglich mithilfe

von bc_type beim Instanziieren der Klasse die Art des Splines zu dndern. Folgende (relevante) Optionen stehen laut
Dokumentation zur Verfiigung: "not-a-knot" (was der Default ist), "periodic", "clamped" und "natural"

Auf Seite 114-115 im Skript finden sich einige Abbildungen zur Konvergenz der verschiedenen Varianten des CubicSplices
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5 Numerische Quadratur

5.3 Grundbegriffe und -ldeen

Es ist oft nicht méglich oder sinnvoll einen Integral analytisch zu berechnen. Mit Methoden der Quadratur kénnen wir
Integrale nummerisch berechnen.
- kann scipy.integrate.quad verwendet werden. Falls man jedoch eine manuelle Implementation erstellen

will, so nutzt man oft die Trapez- oder Simpson-Regel, da sie sowohl einfach zu implementieren, wie auch effizient sind.
In gewissen Anwendungen sind Gauss-Quadratur-Formeln niitzlich, welche man durch Spektralmethoden ersetzen kann,
welche die FFT verwenden und effizienter sind.

Definition 5.3.1

Ein Integral kann durch eine gewichtete Summe von Funktionswerten der Funktion f an verschiedenen Stellen
¢’ approximiert werden:

b n
‘/f@ﬁd%QAﬂa&%=§:%7wﬁ
a i=1

wobei w!* die Gewichte und ¢’ € [a, b] die Knoten der Quadraturformel sind.
\ J

Wir wollen natiirlich wieder ¢} € [a, b] und w}" so wahlen, dass der Fehler minimiert wird.

m Definition 5.3.2

Der Fehler der Quadratur @, (f) ist

b
Emﬁz/f@N—QMﬁmw

Wir haben algebraische Konvergenz wenn E(n) = O (-%) mit p > 0 und exponentielle Konvergenz wenn
En)=0(@")mit0<g¢g<1
1\ J
Die Idee, den Integral einer schweren Funktion zu berechnen, ist diese mit einer einfachen Funktion, die analytisch
integrierbar ist, zu approximieren. Wenn wir diese Funktion geschickt wahlen, dann ist es sogar moglich, dass wir nur
eine solche Funktion fiir alle Funktionen f bendtigen.

Wir ersetzen also f durch f,, € span{cp,ci,...,cn}, wobei die ¢; eine Basis des Raums der Funktionen auf [a, b] bilden:

/ab f(z) dz ~ /ab fulx) dz = /ab (;akbk(l")) dex = éak /ab cx(z) dz

Falls wir ¢ (7) = z* haben (was oft der Fall ist, je nach Funktion aber kdnnte eine rationale Funktion oder andere Arten
besser geeignet sein), dann erhalten wir:
b k+1 _ o k+1
"t —a
/ cx(z) do = ———
a

k+1
Lagrange-Polynome Definition 5.3.3
Fir die Knoten xg, z1,...,x, € R definieren wir die Polynome
n
T =2
li(z) = 4
(@) ll%_%
J#i
als die Lagrange-Polynome zu den Stiitzstellen xq, z1, ..., x,
\_ J

Fir ein Beispiel verweisen wir auf Beispiel 2.3.2
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Bemerkung 5.3.6: (Eigenschaften der Lagrange-Polynome) Zu den Eigenschaften aus 2.3.4 fiigen wir an (die Eigen-
schaften aus Bemerkung 2.3.4 sind hier erneut aufgefiihrt)

L li(zj) =0 Vj#i 4. 50 olk(z)=1VzeR
2. li(z;) =1 Vi 5.3 1™ (2) = 0 fiir m > 0
3. deg(l;) =n Vi 6. lo,l1,...,1, bilden Basis von P, 1

wobei P, 11 der Raum der Polynome von Grad maximal n ist.

Bemerkung 5.3.7: (Quadraturgewichte aus den Lagrange-Polynomen) Das Interpolationspolynom ist gegeben durch:

pla) = fla;)l()
j=0

Durch die Eigenschaften der Lagrange-Polynome haben wir p(z;) = f(x;) und die Konstruktion von p(x) ist eindeutig
in P, 11. Wir erhalten nun eine Quadraturformel, wenn wir p als Approximation von f verwenden:

b
wj:/ lj(l‘), j:(),].,...,’ﬂ,

Diese Gewichte werden fiir die Trapez- und Simpson-Regeln verwendet, genau genommen, im Falle der Trapezregel
AR T K3 R, diG & TRESORISEE 1, 2R MUSIRD P dis e Ry enden | 814G gy glynome integrieren

/abf(x) dz — /abpn(x) dz

Wir wollen also ein kleines Intervall (oft b —a < 1 da wir so das Integral besser approximieren kénnen) und wir setzen
voraus, dass f glatt ist.

< (b= )y max | £ (2)]
n:

Da wir aber oft ein grésseres Intervall betrachten mdchten, ist ein moglicher Ansatz, das grosse Intervall in kleinere

Intervalle zu zerlegen. Wir nehmen ein dquidistantes Gitter, mit zy = zg + k- h fir h = b*Ta und k=0,...,N:

/ab f(z) daz = ]:Z:/;:HI f(x) dz

Die obige Formel wird auch die summierte Quadraturformel genannt. Der Fehler ist dann also:

b N—-1
h™ .
/ f@) de =3 Qf,arri)| < ... < C7(b—a) mit O'= max [7(2)] = |1l
@ k=0 el

n!

Der obige Ansatz ist gewissermassen “divide and conquer” (zu Deutsch: “Teile und Herrsche”, wir werden aber DnC
verwenden) und wir der lokale Fehler liegt in O (h”“) und mit N = (b — a) = h Intervallen der Grosse h haben wir
einen globalen Fehler in O (h™). Folglich ist also der Fehler kleiner, je kleiner h ist.

Wir benutzen erneut einen Variablenwechsel, um von einem Referenzintervall [—1,1] auf eines unserer Teilintervalle
[k, Tx+1] zu wechseln. Dies heisst also allgemein fiir Intervall [a, b] nach [—1,1]:

b 1
1 -~ ~ 1 1
/ f@) dt = 5(67 a)/ f(r) dr mit f(7):=f (2(1 —T)a+ §(T+ l)b)
a -1
Fiir dieses Referenzintervall konnen wir die Gewichte @w; und die Knoten ¢; bestimmen.

b n R n -:ll_’\. 1 s
/af(t)dtz;(ba);@jf(gj);wjf(cj) e =3(1=8lat ;(1+8)

w; = 3(b— a);
Definition 5.3.8: Die Ordnung einer Quadraturformel ist n wenn sie Polynome vom Grad (n — 1) exakt integriert.
Dies folgt natiirlich direkt davon, dass wir ein Polynom n-ten Grades mit n + 1 Koeffizienten darstellen kénnen.

Definition 5.3.9:] (Symmetrie) Eine Quadraturformel auf [—1,1] heisst symmetrisch, falls w; = wy11-; und
¢; = —Cpy1— gilt fur die Gewichte w; und Knoten ¢;

Bemerkung 5.3.10: Die Mittelpunkts-, Trapez- und Simpson-Regeln aus Abschnitt 5.4 sind symmetrisch
Satz 5.3.11: Die Ordnung einer symmetrischen Quadraturformel ist gerade

Beweis: Kann mittels Induktion bewiesen werden, siehe dazu Seite 123 im Skript

5. Januar 2026 34 / 57



Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5.4 Aquidistante Punkte

Untenstehend eine Liste verschiedener Quadraturverfahren (Reminder: Eine Funktion der Orgnung 2 ist eine exakte
Approximation einer konstanten oder linearen Funktion):

Eigenschaft ~ Mittelpunkt Trapez Simpson

Knoten 1 2 3

Ordnung 2 2 4
Fehler o (h2) o (hz) @) (h4)

Symmetrisch Ja Ja Ja

a+b

Mittelpunkt-Regel Q" (f;a,b) = (b—a)f ( ) Gewicht: w =b—a

Trapez-Regel Q7 (f;a,b) = b;a(f(a) + f(b)). Fehler: E(n) = ‘—112(13 - a)3f(2)(§)‘ mit & € [, b]
Fehlerabschitzung: |E,| < (b 12) /"] Gewichte: wy = wy = 52

Simpson-Regel Q°(f;a,b) = bg” (f(a)+4f (“ (b))) Fehler: E(n) = ‘—910< f<4>>f (6)‘
Fehlerabschitzung: | E,| < <b_2“>2 FD(€). Gewichte: bpe, 40=a) boa

Bemerkung 5.4.1: Die Schranken fiir den Fehler erhalt man aus den Lagrange-Polynomen vom Grad n — 1:

F € C(a b)) = (1) 8t~ Qu(F)] < (b= a1l asy

5.4.1 Summierte Quadratur

Mit Anwendung von Divide and Conquer kann die Prazision der Integration verbessert werden, man unterteilt dazu
einfach das Integrationsintervall in viele kleine Intervalle:

7,+1 N-1
/ f(x) da = Z/ Jdr= 3 Qu(fi i, wis)
i=0 Y %¥i i=0

Im Folgenden ist h = T' To=a, x;i =20 +ihund xny =0

Summierte Mittelpunkt-Regel 1(f;a,b) Z h-f (xl + ml“)
=0

N-1
Summierte Trapez-Regel I(f;a,b) Z

i=

M\b‘

N-1
Flai) + flwipn) = g <f(a) +2) ) flai)+ f(b)>

i=1
h2
Fehler: E(n) < E(b —a) max |f”(z)|. Ist exakt bei periodischen, unendlich oft differenzierbaren Funktionen. Unten-

stehend eine Implementation der Trapez-Regel in Numpy

def trapezoidal(f, a, b, N):
x, h = np.linspace(a, b, int(N) + 1, retstep=True)
=h /2.0 (£x[0]) + 2.0 * np.sum(£f(x[1:-11)) + £(x[-1]1))
return I
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Summierte Simpson-Regel

N—-1 N
1o~ & <f<a> WO wWIES N f(b)>

Fva N-1 N ~
=3 (f@a) +2 ; f(@2:) + 4;f@2i_1> + f(fm) mit =

Ti—1 + T

, T2; = T und To;_q = B

N >

Untenstehend eine Implementation der Simpson-Regel

def simpson(f, a, b, N):
X, h = np.linspace(a, b, 2 * int(N) + 1, retstep=True)
I=h/3.0% (np.sum(£(x[::2])) + 4.0 * np.sum(f(x[1::2])) + £(x[0]) - £(x[-11))
return I

5.4.2 Romberg Schema
Fir glatte Funktionen haben wir: T'(h) = I[f] + c1h® + cah® + ... + ¢,h*? + O (h?PT2)
Die Idee des Romberg-Schemas ist es, die fiihrenden Fehlerterme durch Linearkombinationen zu eliminieren

Schritt 1 Berechnung von T'(h) und T'(%):
T(h) = I+ c1h? + coh* + ...
h

h? h4
T<2) —I+Clz+czﬁ+...

Schritt 2 Linearkombination zur Elimination des h?-Terms (Ordnung dann 4):
4T (h/2) — T(h)
fog=—"———
Schritt 3 Wiederholen bis zur gewiinschten Prazision mit der allgemeinen Rekursionsformel:
ARy g1 — Ri—1 51
4k — 1
Der Einfachheit halber konnen die Terme auch in das sogenannte “Romberg-Tableau” eingefiillt werden: Das Romberg-

=T+ chh*+. ..

Ry, =

k| 0 1 2 3
0 T(h)  Roa

1 T(h/Q) R1’1 R172

1 T(h/4) R2,1 RQ’Q Rg,g
1| T(h/8) Rs1 Rsz Rss

Schema konvergiert sehr schnell fiir glatte Funktionen.

5.4.3 Anwendung

In der Praxis keine Newton-Cotes hdherer Ordnung mit dquidistanten Stiitzpunkten
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5.5 Nicht dquidistante Stiitzstellen

Alternativ zur Unterteilung des Intervalls kénnen wir andere Quadraturpunkte erlauben

5.5.1 Gauss Quadratur

In diesem Kapitel werden die Gewichte mit by, bo,...,bs und die Knoten auf unserem Referenzintervall, welches hier
[0, 1] ist, mit ¢1,¢a,...,cs € [0,1] bezeichnet.

Wir méchten unsere Gewichte b; und Knoten ¢; so bestimmen, dass die Quadraturordnung maximal ist.

Wir definieren die Notation (M, g) fo ) dt (also das Skalarprodukt).

Ordnung der Quadraturformel

Die Ordnung ist s + m genau dann, wenn (M, g) = 0 fiir alle Polynome g mit deg(g) < m — 1 und M(t) =
(t—c1) - (t—c2) ... (t —cs) fur s. Also steht M senkrecht zu allen g.

Satz 5.5.2: (Maximale Ordnung einer Quadraturformel) Die Ordnung einer Quadraturformel mit s Knoten ist < 2s

Orthogonale Polynome

Far T ]a b[ sei w : I — R eine stetige Gewichtsfunktion mit w(x) > 0 Vz € I, so dass fur alle k = 0,1,2,...
f |z|*w(z) do existiert.

Orthogonale Polynome m

Im Raum V = {f : I — R stetig, f; |f(2)|>w(z) dz existiert} existiert eine eindeutige Folge von Polynomen
D0, D1, - - - Mit pr(x) = 2% + P(x) mit deg(P(x)) < k — 1 fiir k > 0, so dass px L span{pg,p1,...,px_1}. Sie
konnen mit der 3-Term-Rekursion gebaut werden:

Pe+1(7) = (T = Br+1) - Pe(®) — Yepr—1()

mit po(xz) =1, p_1(x) =0, Br41 = % und Sy = % wobei hier (f, g) f f(z (z) dz
das Skalarprodukt ist.

\ J
Beispiel 5.5.4: (Legendre-Polynome) sind definiert fir w(z) =1, a = —1 und b = 1 (sie sind orthogonal):

po(z) =1 pi(x) =2x
pa(z) = %(3502 -1 p3(x) = %(5x3 — 3x)

Die Normierung der Legendre-Polynome ist nicht standardisiert

- kénnen wir mit scipy.special.eval_legendre und scipy.special.legendre diese Polynome berech-

nen und mit scipy.special.roots_legendre die Knoten berechnen

Beispiel 5.5.5: (Hermite-Polynome) sind definiert fiir w(z) = ¢™*", a = —oo und b = 0o
po(x) =1 pi(z) =
po(z) = 422 — 2 p3(z) = 823 — 12z

Bemerkung 5.5.7: Aus Theorem 5.5.3 folgt direkt, dass ¢y, co, ..., cs die Nullstellen von pg sind.

Bemerkung 5.5.11: (Knoten und Fehler der Gauss-Quadratur)

= Gauss-Knoten sind nicht dquidistant.

= Gauss-Knoten sind nicht verschachtelt (was er damit meint ist, dass wir sie nicht mit DnQ verwenden kénnen
—Wir kénnen also nicht fiir eine Quadratur héherer Ordnung die Knotenpunkte der Gauss-Quadratur tieferer
Ordnung verwenden)
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= Die Gauss-Quadratur ist offen (da die Endpunkte des Intervalls keine Knoten sind)

» Bei der Radau-Quadratur fixiert man ein Ende als Randknoten, und man hat nun Ordnung 2s—1. Die Berechnung
ist ansonsten gleich, bis auf den Fakt, dass wir nur noch (s — 1) Knoten haben (1 bis und mit s — 1).
Sie kdnnen mit scipy.special.roots_jacobi(s - 1, alpha=1, beta=0) berechnet werden.

= Bei der Lobatto-Quadratur fixiert man gleich beide Enden als Randknoten, und man hat Ordnung 2s — 2 und
wir haben die Knoten cs,...,cs_1

= Die Lombatto- und Radau-Quadratur werden haufig bei der Losung gewohnlicher DGL verwendet.

Der Fehler der Gauss-Quadratur ist:

/abf(:v) Zb 16) = T

Und eine obere Schranke fiir den Fehler ist dann

b N
JAECERIED SN,
a k=1

wobei ¢ € R eine Konstante ist und h = b — a die Grosse des Intervalls ist.

(2) mit z € [a, b]

< e max |729(2)
z€la,b)

Bemerkung 5.5.14: (Gewichte der Gauss-Legendre-Quadratur) Fir die Knoten ¢y,...,¢cs und den entsprechenden
Lagrange-Polynomen [y,...,l; mit deg(l;) = s — 1 Vi € {1,...,s}. Die zugehorige Quadraturformel ist exakt fir
Polynome 2s — 1-ten Grades. Die Gewichte sind:
1
bi:/ 1;(t)* dt
0

Satz 5.5.15: Die Gewichte der Gauss-Legendre-Quadraturformel sind positiv.

Algorithmus Laufzeit Genauigkeit Knoten  Genauigkeit Gewichte
GW (1969) O (s%) /] O(s?) o) O (s?)
Bogaert-Townsend O (s) o) 0 (1)
CC (2s Knoten) O (slog(s)) o(1) 0 (1)

Die Gauss-Quadratur ist in der Messtechnik nicht besonders geeignet, da wir die zugrundeliegende Funktion nicht im
Vorhinein kennen und die Kosten fiir die Anpassung der Ordnung aufgrund fehlender Verschachtelbarkeit sehr hoch sind
(wir mussen alle vorigen Berechnungen komplett neu machen)

5.5.2 Clenshaw-Curtis Quadraturformel

Die erste Quadraturformel von Fejér benutzt die Chebyshev-Knoten (Nullstellen der Chebyshev-Polynome erster Art),
welche aber nicht verschachtelt sind. Die zweite Quadraturformel von Fejér benutzt die Filippi-Knoten z; = cos (k%) far
k=1,...,n—1 und Clenshaw und Curtis haben dann zusitzlich noch die Endknoten hinzugefigt (also £k =0, ..., n).
Die Clenshaw-Curtis-Knoten sind die Chebyshev-Abszissen und die Formel verhélt sich mit den entsprechenden Gewichten
dhnlich gleich wie die Gauss-Quadratur.

Da die Clenshaw-Curtis-Quadratur mithilfe der DFT berechnet werden kann ist sie sehr effizient. Dazu miissen wir aber
zuerst etwas umformen, mit = = cos(6), so dass das Integral eine periodische Funktion wird:

/ f(z) dx 7/ f(cos(8))sin(8) dd = f(cos(6))

F(9) ist 2m-periodisch und gerade, kann sich also in eine Kosinius-Reihe entwickeln, also: F'(0) = Y2, ai cos(k0),

woraus folgt, dass . 5
. o ar
/0 F(0)sin(f) dd = ... =ap + E 2

2<k gerade

wobei sich die Koeffizienten aj; mit FFT oder DCT berechnen lassen

Eine wichtige Erkenntnis ist, dass die Newton-Cotes bei grosserer Ordnung komplett unbrauchbar werden, wie das in
Abbildung 5.5.24 im Skript zu sehen ist, wahrend die Clenshaw-Curtis-Quadratur dhnlich gut ist wie die Gauss-Quadratur
(gleiche Konvergenzordnung).
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Quadratur Intervall ~ Gewichtsfunktion  Polynom Notation scipy.special.
Gauss (-1,1) 1 Legendre Py roots_legendre
Chebyshev | (-1,1) 11_Z2 Chebyshev | T} roots_chebyt
Chebyshev Il (—-1,1) 1— a2 Chebyshev II Uy roots_chebyu
Jacobi a, 3 >1 (—=1,1) (1 —2)*(1+x)? Jacobi P,ia‘ﬂ) roots_jacobi
Hermite R e~ Hermite H;j, roots_hermite
Laguerre (0, 00) 2% Laguerre Ly roots_genlaguerre

Tabelle 5.5.16: Gewichtsfunktionen fiir Quadraturformeln

5.6 Adaptive Quadratur

Der lokale Fehler einer zusammengesetzten Quadraturformel auf dem Gitter M :={a =129 < 21 < -+ < &, = b} st

(fur f € C’Q([a,b])):
I Fan) + F(es)

F(t) dt — 5 (@ht1 = k)| < @1 = 201" || oo (fon iz i)

k
Also ist es nur sinnvoll, das Gitter zu verfeinern wo |f”| gross ist.

Auf Seiten 150 - 151 im Skript findet sich Code, um eine adaptive Quadratur durchzufiihren.

Bemerkung 5.6.3: (Adaptive Quadratur in Python) Mit scipy.integrate.quad kénnen wir einfach eine adaptive
Quadratur durchfithren und benutzt QUADPACK. Mit scipy.integrate.quadrature kénnen wir die Gauss-Quadratur

verwenden.

Fiir » € RY, also eine mehrdimensionale Funktion der Dimension d kénnen wir scipy.integrate.nquad verwenden.

Mehr dazu im nachsten Kapitel

5.7 Quadratur in R? und diinne Gitter

Eine einfache Option wére natirlich, zwei eindimensionale Quadraturformeln aneinander zu hangen. Fiir zweidimensionale

Funktionen sieht dies so aus:
ny N2
_ 1,2 1 2
I = / Z Wy, Wy, (cj1’cj2)
J1 ja

und fiir beliebige d haben wir

(wh & k=1,....d

e G 1<z

Was dasselbe ist, wie oben, aber mit d Summen und d-mal ein w;, und eine d-dimensionale Funktion f

TODO: Write this section

Die wichtigste Erkenntnis aus diesem Abschnitt ist die Idee, ein Sparse-Grid zu verwenden, um die Rechenarbeit zu

reduzieren.

- Gibt es die Moglichkeit Sparse-Grid arrays mit scipy.sparse zu erstellen.
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5.8 Monte-Carlo Quadratur
Bei der Monte-Carlo Quadratur wird, wie bei anderen Monte-Carlo-Algorithmen der Zufall genutzt

Grundrezept \Wir nehmen N zahlen t; die zufillig aus der uniformen Verteilung auf [0, 1] gewahlt werden.

1 1 N
1:/0 z(t)dtNN;z(t)

Auf einem anderen Intervall [a, b] haben wir dann fir s; = a+ (b—a) - t;
2(s4)

b
1
I:/a z(s) ds%|b—a|NZ =:Iy

i=1

Bemerkung 5.8.1: Die Konvergenz ist sehr langsam (v/N), aber nicht abhangig von der Dimension oder Glattheit.
Zudem kann das Ergebnis falsch sein, da es probabilistisch ist.

Jede Monte-Carlo-Methode benétigt folgendes mit X = [Ix—dn, In+0n] und X enthalt den wahren Wert f[o.1]d z(t) dt
in ungefahr 68.3% der Fille fiir N t; uniform Verteilt in [0, 1]¢:

= ein Gebiet fir das “Experiment”, hier [0, 1]d = gute deterministische Berechnungen, hier oy und Iy
= gute Zufallszahlen = Darstellung des Ergebnis, hier Pr[] € X| = 0.683

FEN a2 - (AT e0)

Sei &N = =

Das Monte-Carlo-Verfahren beruht auf folgendem:
/ 2(z) dz = Ez(X) mit X ~U([0,1]9)
[0,1]

wobei 2([0,1]%) die uniforme Verteilung der Zufallsvariable auf dem d-dimensionalen Intervall [0, 1]¢

Das Ziel der Monte-Carlo-Methode ist es, den Erwartungswert durch den Mittelwert der Funktionswerte der simulierten
Zufallsvariable mit einem Schétzer my(2(X)), bzw. einer Schatzung my (z(x)) zu approximieren:

1 1
my Zz mpy(z(x)) := N Zz(w )
i=1

z:l

Bemerkung 5.8.16: Wir verwenden my (z(z)) fir das z(x) im obigen Integral:

1
Empy(2(X)) = NNEZ(X) = /[0,1}d z(z) dx

Die Approximation von Ez(X') durch my (x) ist besser, je kleiner die Varianz ist:

N
1 1 1
X)) = — X)) | =—=N X)) =— X
Vi (=(X)) = V (N > ») S NV((X) = V() 0
Der Zentrale Grenzwertsatz (Central Limit Theorem) besagt, dass fir grosse N
my (2(X)) — Ez(X)
7 V(2(%))
sich fast wie eine normalverteilte Zufallsvariable Y ~ N(0,1) verhilt. Daraus folgt mit o(z(X)) = /V(2(X)):

pr[lmn ) - B0 < 22 = L [ F a0 (L) =m0 (1)

wobei 2\ die Lange des Integrationsintervalls ist, mit A definiert als die Ldnge des untersuchten Intervalls. Wir haben

. . . 1
also eine langsame Konvergenz mit Fehler in O (ﬁ)
Oben (Bemerkung 5.8.1) wurde bereits erwahnt, dass wir 68.3% als die Wahrscheinlichkeit haben, dass wir den exakten
Wert in unserem Intervall haben. Woher kommt aber dieser Wert? Wenn wir A = 1 wahlen (wie es der Fall ist fiir das
gewahlte Intervall), dann erhalten wir p(1) ~ 0.683. Dies trifft allerdings nur zu, wenn N geniigen gross (N > 30) ist.
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Um die Prazision abzuschitzen, bendtigen wir einen Schatzer fiir V(2(X)) = E(2(X)?) — (E(2(X)))*:
N
B3((2)) = D)) — m () = o (mn (2(X))? = (my(2(X)))?)

N —1¢4
Jj=1

Aus dem kann die Schatzung fiir 5 von oben hergeleitet werden:

Vg (=) — (ma=(@))
fir y = 1/V(2(X)) (oder ohne das N im Zahler fiir \/y—ﬁ) und V(2(X)) = Ed5(2(X))

Vertrauensintervall m

Das Intervall mit y = Ad5(2(X))

v (a(2) - e a(2) + ]

enthilt den wahren Wert I = E(z(X')) mit Wahrscheinlichkeit p(A) bis auf einen Fehler in (9(
Vertrauensintervall ist:

) und das

S

[mN(z(X)) — AaN,mN(Z(X)) + /\51\7]
'\ J

Wiederholen wir das Experiment M mal, mit M gross, so enthilt das Vertrauensintervall den Wert T in ungefahr 100p(\)
Prozent der M Fille.

Bemerkung 5.8.21: Ein kurzes Vertrauensintervall entspricht einer hohen Wahrscheinlichkeit, dass das Vertrauensin-

tervall den wahren Wert enthalt. Im Grundrezept wird A = 1 mit p(1) = 0.683 verwendet. Um ein kiirzeres Vertrauens-
intervall zu erzielen kénnen wir IV erhéhen, oder die Berechnungen so reorganisieren, dass die Varianz kleiner wird. Wir
brauchen also fiir einen Fehler ¢ ungefahr E% Evaluierungen.

Seiten 171 bis 176 im Skript enthalten eine Implementation. Unten eine simple Implementation ohne Plotting:

import numpy as np

def monte_carlo_integral(func, a, b, N):
t = np.random.uniform(a, b, N)
fx = func(t)
I = np.mean(fx) * (b - a)
var = np.std(fx, ddof=1) / np.sqrt(N)
return I, var
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5.9 Methoden zur Reduktion der Varianz

Bei hoheren Dimensionen d ist die Monte-Carlo-Methode oft die einzige praktikable Option. Deshalb ist es wichtig,
Methoden zu haben, um die Varianz zu verringern.

5.9.1 Control Variates

Die Idee ist hier, bekannte Integrale zu verwenden, um die Varianz zu reduzieren. Wir schreiben unser Integral unter
Verwendung eines bekannten, exakten Integrals ¢(z) neu:

JJJ #@) = J]] @) —e@) = [[f 22+ []] o)

Das Ganze funktioniert natiirlich fir jedes d € N. Oft wird die Taylor-Entwicklung von f(z) gewahlt, da diese einfach
analytisch integrierbar ist.

Die Varianz wird dadurch reduziert, dass wir nur noch fiir z(x) einen Fehler haben.

- konnen wir dies folgendermassen implementieren:

def control_variate_mc(func, phi, analytic_int_phi, a, b, N):
t = np.random.uniform(a, b, N)

val = func(t) - phi(t)

I = np.mean(val) * (b - a) + analytic_int_phi

return I

5.9.2 Importance Sampling

Importance Sampling

Nicht alle Punkte, die wahrend der Monte-Carlo Integration gezogen werden sind, sind gleich wichtig
Importance Sampling optimiert die Verteilung der Punkte

= Man gewichtet die Punkte mit einer Dichtefunktion g(x), die wichtige Bereiche betont

Der Erwartungswert wird als gewichteter Mittelwert berechnet, sodass keine Verzerrung auftritt

Wir schreiben unser zu berechnendes Integral mit D = @ ein Intervall

If/f

mit der Hilfsdichte g(z) (fir welche gilt [, d =1)

1= /sy =5 ()

Der entsprechende Monte-Carlo-Schétzer mit N Stichproben X; ~ g ist

N
~ 1 2(AX;)
Iy==>
MTN (X,

()/ ‘

Ideal ist g(x) o | f(z)|, also proportional zum Betrag von f(z

und dessen Varianz ist

5.9.3 Quasi-Monte-Carlo

Oft ist ein deterministischer Fehler nitzlich, weshalb man bei der Quasi-Monte-Carlo-Methode die Zufallszahlen durch
quasi-zufallige Folgen ersetzt. Diese Folgen decken den Integrationsbereich systematisch ab.

Dies fithrt dazu, dass unser Fehler mit O (N =1 - (log(IV))?) abnimmt. Fiir kleine d haben wir ungefahr eine Abnahme
in O (N?), aber bei grossen d ist die Verbesserung kaum mehr sichtbar.

In der Realitit sind diese Methoden (besonders die Sobol-Sequenzen) trotzdem effektiv, da viele Integrale “effektiv
niedrigdimensional” sind.
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6 Nullstellensuche

6.1 Iterative Verfahren

Definition 6.1.1: Ein iteratives Verfahren ist ein Algorithmus ¢, der die Folge z(® z(1) ... von approximativen
Lésungen 1) generiert. Die Definition ist dabei rekursiv: z(*) := ¢p(z(*=1)), sofern 2(°) und ¢ gegeben sind.

Definition 6.1.5:) (Konvergenz) ¢ zur Losung F(z*) = 0 konvergiert, wenn 2(*) — 2*, mit 2* die Nullstelle.
Definition 6.1.8: (Norm)
- haben wir numpy.linalg.norm, welches zwei Argumente nimmt. Dabei ist das erste Argument der Vektor

und das Zweite die Art der Norm. Ohne zweites Argument wird die Euklidische Norm ||z||2, mit Argument 1 wird die

1-Norm ||z||y := |z1| + ... 4 |z»| und mit mit inf als Argument wird die co-Norm, bzw. die Max-Norm ||z||s :=
max{|x1],...,|z,|} berechnet.
Definition 6.1.10: Zwei Normen || - ||; und || - ||2 sind &quivalent auf V, falls es Konstanten C und C gibt so dass

C- vl <|lvll2 < C-||v|i Yo €V, mit V ein linearer Raum
Satz 6.1.11: Falls dim(V) < oo, dann sind alle Normen auf V dquivalent

Definition 6.1.13: (Lineare Konvergenz) *) konvergiert linear gegen x*, falls es ein L < 1 gibt, so dass

|z — 2*|| < L||z® — z*|| Vk > ko, L genannt Konvergenzrate

Definition 6.1.15: (Konvergenzordnung) p fiir das Verfahren, falls es ein C' > 0 gibt, so dass
|z — 2| < Ol|a® — 2*||P Yk e Nmit C < 1firp=1
Wir nehmen dabei an, dass ||2(®) —2*|| < 1, damit wir eine konvergente Folge haben. Man kann die Konvergenzordnung
folgendermassen abschatzen, mit ¢, := ||z(*) — 2*|| (Konvergenzrate in Bemerkung 6.1.19):
_log(egy1) — log(er)
log(sk) — Ek—1

Intuitiv haben wir Quadratische (oder Kubische, etc.) Konvergenzordnung, wenn sich die Anzahl Nullen im Fehler jede
Iteration verdoppeln (verdreifachen, etc.)

Bemerkung: Eine hohere Konvergenzordnung ist in Lin-Log-Skala an einer gekrimmten Konvergenzkurve erkennbar.
Bemerkung 6.1.19: (Abschatzung der Konvergenzrate) Sei e, := ||x*) — 2*|| die Norm des Fehlers im k-ten Schritt.
€pr1 ~ L - e = log(ep11) = log(L) + log(er) = ex41 =~ klog(L) + log(eg)

(k41 _ ) 4 0@ ™) +1

sin(x(k)) . Dabei verwenden

Untenstehender Code berechnet den Fehler und die Konvergenzrate von x

wir z(15) anstelle von z* zur Berechnung der Konvergenzrate, da z* meist unbekannt ist.

def linear_convergance(x):

y = [1 # container for the z(j)

for k in range(15):
x =x + (np.cos(x) + 1) / np.sin(x) # apply the iteration formula
y += [x] # store the value in the container

err = abs(np.array(y) - x) # estimation for the error

rate = err[1:] / err[:-1]

# estimation for convergence rate

return err, rate
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6.2 Abbruchkriterien

Wir miissen irgendwann unsere Iteration abbrechen kénnen, dazu haben wir folgende Méglichkeiten:

Typ Idee Vorteile Nachteile
A priori Fixe Anzahl ko Schritte Einfach zu imple- Zu ungenau
mentieren
A posteriori Berechnen bis Toleranz € < 7 erreicht  Prazise Man kennt x* nicht
Ungefihr gleich Itaration bisz(*t1) ~ z(F) Keine Voraussetzun- Ineffizient
gen
Residuum Abbruch wenn ||F(z"®)|| < 7 (wir al- Einfach zu imple- Bei flachen Funktionen kann
so fast bei 0 sind mit dem Funktions- mentieren [|IF(z®)|| klein sein, aber &

wert) gross)

Tabelle 6.2.1: Vergleich der Abbruchkriterien

Bemerkung 6.2.2: Fiir das a posteriori Abbruchkriterium mit linearer Konvergenz und bekanntem L gilt die Abschatzung
aus Lemma 6.3.6 mit Korollar 6.3.17

6.3 Fixpunktiteration
Ein 1-Punkt-Verfahren benétigt nur den vorigen Wert: z(F+1) = ¢(2(*))

Definition 6.3.1: Eine Fixpunktiteration heisst konsistent mit F(z) =0 falls F(z) =0 < ¢(z) =z

1+x

Beispiel 6.3.2: Fir ['(z) = ze” — 1 mit z € [0, 1] liefert ¢1(x) = e~ lineare Konvergenz, ¢o(z) = {375

Konvergenz und ¢3(z) = = + 1 — ze® eine divergente Folge.

quadratische

Definition 6.3.5: (Kontraktion) ¢ falls es ein L < 1 gibt, so dass ||¢(z) — ¢(y)|| < Ll|lx — y|| Vz,y

Bemerkung 6.3.6: Falls x* ein Fixpunkt der Kontraktion ¢ ist, dann ist
|2+ — 2% = ||p(z™) = p(z*)[| < Llja™ — 27|

Banach’scher Fixpunktsatz

Sei D C K" (K = R, C) mit D abgeschlossen und ¢ : D — D eine Kontraktion. Dann existiert ein eindeutiger
Fixpunkt z*, fiir welchen also gilt, dass ¢(z*) = 2*. Dieser ist der Grenzwert der Folge z(*+1) = ¢(z(¥)).

Lemma 6.3.8: Fir U C R™ konvex und ¢ : U — R stetig differenzierbar mit L := sup,cy ||Dy(2)|] < 1 (Dg(x)
ist die Jacobi-Matrix von ¢(x)). Wenn ¢(z*) = z* fiir z* € U, dann konvergiert z(*+1) = ¢(2(*)) gegen z* lokal
mindestens linear. Dies ist eine hinreichende (= sufficient) Bedingung.

Lemma 6.3.11: Fir ¢ : R" — R™ mit ¢(z*) = «* und ¢ stetig differenzierbar in z*. Ist ||Dy(z*)|| < 1, dann
konvergiert 2(**1) = ¢(2(¥)) lokal und mindestens linear mit L = || Dy (z*)||

Satz 6.3.13: (Satz von Taylor) Sei I C R ein Intervall, ¢ : I — R (m + 1)-mal differenzierbar und = € I. Dann gilt
fir jedes y € I
m 1 .
6(y) = o(x) = Y 7 (4P @)y —2)*) + O (jy — ™)
k=1
Lemma 6.3.14: Sei I und ¢ wie in Satz 6.3.13. Sei zudem ¢()(z*) = 0 fiirl € {1,...,m} mit m > 1. Dann konvergiert
z*+D = () lokal gegen z* mit Ordnung p > m + 1

Lemma 6.3.16: Konvergiert ¢ linear mit L < 1, dann gilt:

W< L7 e o

* < = o

lo* = 2@ < T |20 — 20

Korollar 6.3.17: fiir [ = 0 haben wir ein a priori und fiir [ = k — 1 ein a posteriori Abbruchkriterium:

lo* = 2 < 2 o) — D) < 7

lo* —2®|| < la® — @) <7

1-L 1-L
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6.4 Intervallhalbierungsverfahren

Die Idee hier ist, das Intervall immer weiter zu halbieren und ein bekannterer Namen fir dieses Verfahren ist Bisekti-
onsverfahren.

- haben wir scipy.optimize.bisect und scipy.optimize.fsolve, wobei fsolve ein alter Algorithmus
ist.
Im Skript auf Seiten 206 - 207 findet sich eine manuelle implementation des Bisektionsverfahren. Der Code ist jedoch

(at the time of writing) nicht ausfiihrbar aufgrund von IndentationErrors

Das Bisektionsverfahren konvergiert linear und kann nur fiir Funktionen verwenden, bei welchen die Nullstellen auf beiden
Seiten jeweils ungleiche Vorzeichen haben.

Fir jeden Iterationsschritt ermitteln wir die Mitte des Intervalls und berechnen die Funktionswerte an den Randern, wie
auch dem Mittelpunkt. Dann ersetzen wir den Rand des Intervalls, dessen Funktionswert dasselbe Vorzeichen hat, wie
der Funktionswert des Mittelpunkts.

6.5 Newtonverfahren in 1D

Beim Newtonverfahren verwendet man fiir jeden Iterationsschritt die lineare Funktion F' = F(z(k)) + F'(z®) (2 — 2(®).

Die Nullstelle ist dann: .
P(J: k )
(k4+1) . (k) S\ 1 (k)
T = ’(x(k))’ falls F'(x'%) #£ 0

Bemerkung 6.5.2: Die Newton-lteration ist eine Fixpunktiteration mit quadratischer lokaler Konvergenz, mit

__ Fl) oy )P (x) oy
¢($)*x*F,(x) :NZS(@*W:Mb@ )=0

falls F(2*) = 0 und F(a*) # 0
6.6 Sekantenverfahren
Falls die Ableitung zu teuer oder nicht verfiigbar ist, kann man sie durch q(k) = % Dann ist ein Schritt:

- By 4 o8) (g — 2 F) (w+1) 0 _ @) (*)

F(z)=F&")+ ¢ (z—2") == = - — falls ¢') #0

q

6.7 Newton-Verfahren in n Dimensionen

Sei D CR™ und F': D — R" stetig differenzierbar. Die Nullstelle ist
gD = B _ D0 LR ()

wobei DF (z(F)) = [gf; (x)] i die Jacobi-Matrix von F' ist.
: Jk=12,...,n

Wichtig ist dabei, dass wir niemals das Inverse der Jacobi-Matrix (oder irgend einer anderen Matrix) von der Form
s = A~'b, sondern immer das Gleichungssystem As = b |ésen sollten, da dies effizienter ist:

def newton(x, F, DF, tol=le-12, maxit=50):

x = np.atleast_2d(x) # ’‘solve’ erwartet z als 2-dimensionaler numpy array
# Newton Iteration
for _ in range(maxit):

s = np.linal.solve(DF(x), F(x))

X -=s

if np.linalgnorm(s) < tol * np.linalg.norm(x):

return x

Wollen wir aber garantiert einen Fehler kleiner als unsere Toleranz 7 kdnnen wir das Abbruchkriterium
IDF(z*= D)7 F®)|| <7
verwenden. Code, welcher dies implementiert findet sich auf Seite 213-216 im Skript.
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6.8 Gedampftes Newton-Verfahren

Wir wenden einen einen Dampfungsfaktor A(*) an, welcher heuristisch gewihlt wird:
e = (B _ \®) D (R =1 (k)
Wir wahlen A(®) so, dass fir Az(®) = DF(z"))=1F(z(*)) und A\F) = DF(2®) =1 F(z®) — X Az(K)

A(K)
18l < (1- 25 180l

6.9 Quasi-Newton-Verfahren

Falls DF(x) zu teuer ist oder nicht zur Verfiigung steht, kénnen wir im Eindimensionalen das Sekantenverfahren ver-
wenden.

Im héherdimensionalen Raum ist dies jedoch nicht direkt moglich und wir erhalten die Broyden-Quasi-Newton Methode:

F(x(k+1))(Ax(k))T

J = J
b= e TR

Dabei ist Jy z.B. durch DF(z(?)) definiert.

Bemerkung 6.9.1: (Broyden-Update) Das Broyden-Update ergibt beziiglich der || - ||2-Norm die minimale korrektur
der Jakobi-Matrix Ji an, so dass die Sekantenbedingung erfiillt ist. Die Implementierung erzielt man folgendermassen
mit der Sherman-Morrison-Woodbury Update-Formel:

gl — (I JEIF(f(k+1))(Ax(k))T >J—1
P 1Az 03 + (AT T F (kD) ) 7

Das Broyden-Quasi-Newton-Verfahren konvergiert langsamer als das Newton-Verfahren, aber schneller als das verein-
fachte Newton-Verfahren. (sp ist Scipy und np logischerweise Numpy im untenstehenden code)

def fastbroyd(x0, F, J, tol=le-12, maxit=20):
x = x0.copy() # make sure we do not change the iput
lup = sp.linalg.lu_factor(J) # LU decomposition of J
s = sp.linalg.lu_solve(lup, F(x)) # start with a Newton corection
sn = np.dot(s, s) # squared norm of the correction
X —= 8
f =F(x) # start with a full Newton step
dx = np.zeros((maxit, len(x))) # containers for storing corrections s and their sn:
dxn = np.zeros(maxit)
k=20
dx[k] = s
dxn[k] = sn
k += 1 # the number of the Broyden iteration

# Broyden iteration
while sn > tol and k < maxit:
w = sp.linalg.lu_solve(lup, f) # f = F (actual Broyden iteration )
# Using the Sherman-Morrison-Woodbury formel
for r in range(l, k):
w += dx[r] * (ap.dot(dx[r - 1], w)) / dzxnl[r - 1]
z = np.dot(s, w)
s=0U+2z/(sn-2)) *w
sn = np.dot(s, s)
dx[k] = s
dxn[k] = sn
X -= s
f = F(x)
k += 1 # update = and iteration number k
return x, k # return the final value and the numbers of iterations needed
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7 Intermezzo: Lineare Algebra

7.1 Grundlagen

Bemerkung 7.1.1: Eine Tabelle mit invertierbaren und nicht invertierbaren Matrizen findet sich unten:

Invertierbar Nicht Invertierbar

A ist regular A ist singular

Spalten sind linear unabhangig Spalten sind linear abhangig

Zeilen sind linear unabhangig Zeilen sind linear abhangig

det(A) £0 det(A) =0

Axz = 0 hat eine Lésung . = b Az = 0 hat unendlich viele Lésungen

Az = b hat eine Lésung © = A~ 'b Az = b hat keine oder unendlich viele Lésungen
A hat vollen Rang A hat Rang r <n

A hat n non-zero Pivots A hat r < n Pivots

span{A.1,...,A. ,} hat Dimension n span{A.1,..., A, ,} hat Dimension r <n
span{A;.,..., A, .} hat Dimension n span{A; ..., A, .} hat Dimension r < n
Alle Eigenwerte von A sind nicht Null 0 ist der Eigenwert von A

0 ¢ 0(A) = Spektrum von A 0e€o(A)

A A ist symmetrisch positiv definit A A ist nur semidefinit

A hat n (positive) Singularwerte A hat r < n (positive) Singularwerte

Definition 7.1.2: (Orthogonale Vektoren) Vektoren ¢, ..., q, heissen orthogonal, falls
g’ - q; =0 Vi,j <nwithi#j

Wenn sie zudem normiert sind (also ||¢;||2 =1 Vi < n), dann heissen sie orthonormal

Bemerkung 7.1.3: In der vorigen Definition wird die Euklidische Norm ||q||3 = ¢" - ¢ verwendet

Bemerkung 7.1.7: (Rotationen) Die Rotationsmatrix fiir eine Rotation um Winkel 6 ist gegeben durch:

cos(f) 0 —sin(6)
Ry = 0 1 0
sin(@) 0  cos(d)

Perturbierte LGS
Statt Az = b ist das LGS ungenau gegeben: (A + AA)(T —z) = Ab— AAx.

Definition 7.1.18: (Konditionszahl) cond(A) := ||A7!|| - ||A]|. Manchmal auch mit x(A) notiert
Auch hier gibt es sie wieder fiir verschiedene Normen:

n ko(A) = ‘7’“57((21; (Spektralnorm mit Singularwerten)

" Foo(A) = [|A]oc - HAl‘lIIoo
= w1 (A) = [|All - []A K

cond(A) > 1 bedeutet intuitiv: kleine Anderung der Daten — grosse Anderung in der Lésung

Zudem haben wir folgende Eigenschaften:
= w(A)>1 » k(A) =kK(ATY)
» k(cA) =k(A) Ve#£0 = Fir orthogonale und unitdre Matrizen Q: k2(Q) =1

Grosse Matrizen

Passen oft nicht (direkt) in den Speicher: effizientere Speicherung nétig, méglich fiir z.B. Diagonalmatrizen, Dreiecks-
matrizen. Auch fiir Cholesky moglich.

Diinnbesetzte Matrizen

nnz(A) == [{(4,7) | aij € A,a;; #0} <K m-n

Einfacher zu speichern: val, col, row sind Vektoren so dass vallk] = a;;, wobei i = row[k], j = coll[k]. (nur

aij 7é 0)
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Es gibt viele Formate, je nach Anwendung sind gewisse sinnvoller als andere. (Siehe Tabelle, NumCSE)

scipy.sparse.csr_matrix(A) — Dramatische Speichereinsparung.
Deprecated: bsr_array und coo_array verwenden, kompatibel mit numpy arrays.

CSC, CSR erlauben weitere Optimierungen, je nach Gewichtung der a;; auf Zeilen, Spalten.

7.1.1 Gauss Elimination / LU Zerlegung

Das Anwenden der Gauss-Elimintation ergibt die LU-Zerlegung, gegeben durch A € R"*™ = PLU, wobei U eine obere
Dreiecksmatrix (die resultierende Matrix der Gauss-Elimintation), L eine untere Dreiecksmatrix (Matrix aller Schritte
der Gauss-Elimintation) und P eine Permutationsmatrix ist.

- kénnen wirP, L, U = scipy.linalg.lu(A) (Numpy liefert keine LU-Zerlegung). Mit scipy.linalg.lu _solve(P,

L, U) kann man dann das System lésen. Jedoch ist dies nicht sinnvoll, wenn wir die Dreiecksmatrizen gar nicht bendtigen.
In diesem Fall verwenden wir einfach numpy.linalg.solve(A)

L = np.linalg.solve(A) #A=LGQ@L.T
y = np.linalg.solve(L, b)
x = np.linalg.solve(L.T, y)

Cholesky Zerlegung (A ist positiv defefinit und hermetisch)
A=LDL" = LVDVDL" = RER
S ——
RH R

Diese Zerlegung kann Axz = b potenziell schneller l6sen als LU und wir verwenden nur halb so viel Speicher. Zudem ist
keine Pivotierung nétig, also ist das Verfahren fiir symmetrisch positiv definite Matrizen numerisch stabil.

Im Folgenden ist der Cholesky algorithmus in Pseudocode beschrieben:

Algorithm 1 CHOLESKY(A)

1 n < A.shape[0]
l < Initialisiere ein n X n array

Lij < Az — i) 13

fori=5+1,...,ndo

1 j—1
6 lij — — Aij — Zlikljk
s k=1

7 return |

2
3 forj=1,2,....,ndo
4
5

- haben wir via scipy.linalg die Funktionen cholesky, cho_factor und cho_solve, wie auch bereits
dquivalent fir die LU-Zerlegung

7.1.2 QR-Zerlegung

Wir kénnen eine Matrix A € R™*™ mit m > n als A = QR zerlegen, wobei () € R™*" orthonormale Spalten besitzt
und R € R™*" ist eine obere Dreiecksmatrix.

Die QR-Zerlegung ist numerisch stabiler bei schlecht konditionierten Problemen, ist die Basis vieler Eigenwertverfahren
und ist ideal fiir Least Squares.

Wir kénnen mit der QR-Zerlegung auch LGS Ax = b lésen:
Ar=b<= QRr=b<= Rz =Q"b

Da Q orthogonal ist, haben wir Q' = Q. Um das Ganze einfacher zu machen, l6sen wir das System Rx = 7, wobei
y := Q"b. In numpy kénnen wir direkt mit np.linalg.solve() dies Iésen (nutzt automatisch Riickwartssubstitution)
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Givens-Rotations

Bei der Givens-Rotation generiert man eine Rotationsmatrix, die die (4, j)-Ebene um einen Winkel 6 rotiert. Die dazu
konstruierte Matrix hat dabei die folgende Form (rechts eine Beschreibung des Eintrags (k,1)):

1 0 0
0 k=INk#i,j |
c s k=IN(k=iVk=j) c
G(i,5,0) = | : : | oder G(i, 7,00y = k=iAl=j s
—s - k=jAl=1 S
0 sonst 0
0 1]

Dabei ist ¢ = cos(f) und s = sin(#). Diese Matrix hat einige niitzliche Eigenschaften: GT G = I (also ist G orthogonal),
also gilt auch G=' = G'T und G modifiziert nur Zeilen i und j

Im Zweidimensionalen Raum koénnen wir die Werte fiir ¢ und s so bestimmen:

= A= 1)

b
r=+/a? + b2, c:g7 § = —

r r

Wir haben jedoch das Problem, dass die Berechnung von r tberlaufen kann. Dies I6sen wir, indem wir skalieren:

Falls |b] > |al: Falls |a| > |b]:
1
t = g’ S = — C= 38" t b 1

2’ . c
b Vi+t a Jite

~+
|
I
V)
|
o
s+
|

Es ist wichtig, dass wir das r = sign(a)v/a? + b2 mit Vorzeichen berechnen, um Ausléschung zu vermeiden

Man kann nun mit der Givens-Rotation die QR-Zerlegung durchfiihren:

Algorithm 2 GIVENSQRDECOMPOSITION(A)

1 m < A.shape[0]
2 n < A.shape[1]

3 q < Initialisiere ein n x n array

4 for j=1,2,...,ndo

5 fori=m,...,2 do

6 Nullsetze Gy, j, Gm—1,j,- - -,a2,; durch Givens-Rotationen Gy, j, Gr—1j,-..,G2,;
7

return [
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Gram-Schmidt

Die Idee des Gram-Schmidt-Algorithmus ist es, orthonormale Vektoren zu konstruieren und diese dann zur Matrix @
zusammenzubasteln.

Es wurden zwei Algorithmen behandelt, beide unten in Pseudocode:

Algorithm 3 CLASSICALGRAMSCHMIDT(A)

1 n < A.shape[0]

2 q < Initialisiere ein n x n array
3 r < Initialisiere ein n X n array
4 for k=1,2,...,ndo

5 Vg < ag > Der k-te Spaltenvektor
6 fori=1,...,k—1do
7 Tik q;'—ak
8 Vg 4 ag — Zf;ll Tikgi
9 Tk = [|vkl|
10 gk = Vi /Tkk > Vektor normieren

11 return q, r

Algorithm 4 MODIFIEDGRAMSCHMIDT(A)

1 n < A.shape[0]
2 g < Initialisiere ein n x n array

3 r < Initialisiere ein n x n array

4 for k=1,2,...,ndo

5 Vg 4 Qg > Der k-te Spaltenvektor
6 fori=1,...,k—1do

7 Tik qZ-Tvk.

3 Uk <= Uk — Tiki

9 Qr = VK /Tkk > Vektor normieren

10 return g, r

Falls R nicht benétigt wird, kann viel Speicher gespart werden, indem man das r;; als eine scoped variable verwendet.
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Householder-Reflektor

’U’UT

v
Wir konstruieren eine Matrix H = —2— =1 — 2uu' mitu= —.
vl [v]|

Dabei ist die Matrix H orthogonal (H" H = I) und symmetrisch (H" = H).

Um nun die QR-Zerlegung durchzufiihren mit der Householder-Reflektion fehlen uns die Householder-Reflektoren. Um

diese zu erstellen wollen wir das v so waéhlen, dass Hx = ||x||e; gilt. So werden also m — 1 Elemente auf einmal auf
Null gesetzt.
Der Ansatz dazu ist entsprechend v = x — ae; mit « = —sign(x1)||x|| (minus, um numerische Stabilitit zu erhalten)
und wir haben dann: T
v
Hx = aeq <:>sz$—va
vlo

Dann miissen wir nur noch v"z und v v berechnen und auflésen. Der vollstandige QR-Algorithmus lautet:

Algorithm 5 HOUSEHOLDERQR(A)

1 n < A.shape[0]

2 H < Initialisiere ein n X n array

3 fork=1,2,...,ndo

4 x <+ Ak :m,k > Wahle subvektor der k-ten Spalte
5 Hj, < Konstruiere Householder-Reflektor fiir x

6 Ak :m,k:n) < HyA(k:m,k :n) > Update
7 Q<+ HiHy---H,

8 R« H,H, ,---HA

9 return Q, R

Die Laufzeiten der verschiedenen Methoden im Vergleich:

» Householder-QR: =~ 2mn?2 Flops
= Gram-Schmidt: ~ 2mn? Flops
» Givens: ~ 3mn? Flops

Jedoch ist die Householder-Methode bedeutend stabiler als die anderen beiden.

7.1.3 Singularwertzerlegung

Satz 7.1.35: Jede Matrix A € C™*"™ kann in unitdre Matrizen U € C™*™ und V € C"*" und die Diagonalmatrix

¥ = diag(oy,...,0p) € C™*", wobei p = min{m,n} und 01 > ... > 0, > 0, wobei o; der i-te Eigenwert ist, so dass
A=UxvH

Die PCA (principal component analysis, zu Deutsch Hauptkomponentenanalysis) setzt sich zum Ziel, die Menge an
Informationen so zu reduzieren, so dass nur das Notwendige iibrig bleibt.

Idealerweise sind die Daten frei von jeglichem Rauschen:
a; ~ span{uy,...,u,} mit p K n
In der Realitat haben wir jedoch oft ein Rauschen in den Daten:
P
a; = Zaiuwij + kleine Stérungen
i=1

Die PCA versucht nun das p zu bestimmen und die orthonormalen Trendvektoren u;, ..., u, zu finden. Die Spalten von
U aus der SVD sind genau die gesuchten Trendvektoren (kénnen geordnet werden nach den zugehérigen Singularwerten):

P
Ay~ g OiliVij
i=1

Hierbei ist A eine Datenmatrix, bei welcher die Spalten die Datenpunkte oder Messungen sind und die Zeilen die
verschiedenen Merkmale oder Zeitpunkte in den Messungen sind.
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Die Matrix VH enthilt in ihrer j-ten Spalte die Gewichte, die die p-Trends zum j-ten Datenpunkt beitragen.

P2
. .0
Die ersten p Komponenten erfassen ca. 2;7112
> i1
q min{m,n}
Varianzkriterium p = min < q: Z 032- >e Z O'J2- . Oft wird £ = 0.90 verwendet (oder £ = 0.95, dies ist jedoch
Jj=1 Jj=1

konservativ, also kann es sein, dass es mehr Komponenten benétigt). € € (0,1)
- kénnen wir sowohl die vollstandige Singuldrwertzerlegung durchfiihren, wie auch nur die Singularwerte be-
rechnen.

» Zur vollstindigen Berechnung nutzen wir numpy.linalg.svd (Option full matrices=False fiihrt eine sparsa-
mere Version der SVD durch) oder scipy.linalg.svd,

= Falls wir nur die Singularwerte benétigen, dann liefert scipy.linalg.svdvals eine giinstigere Alternative.

Algorithm 6 PCA(A, ¢)
1 n < A.shape[0]
2 m < A.shape[1]

3 U, %, VH « Singularwertzerlegung von A
4 p < berechnet wie oben mit Varianzkriterium
5Up U 1yp > Wahle erste p Spalten von U

6 return U, Singularwerte o1,...,0,

import numpy as np

# SVD of the data matriz

U, sigma, Vh = np.linalg.svd(A, full_matrices=False)

threshold = 0.90 # Threshold for variance (e.g. 90/, the epsilon as discussed previously)
total_var = np.sum(sigma**2)

cumsum = np.cumsum(sigma**2)

p = np.argmax(cumsum >= threshold * total_var) + 1

U.p = Ul:, :pl # Primary components

scores = A.T @ U_p # Projection of the data

A word of caution:
» Zu niedriges € kann zu Informationsverlust fithren

= Zu hohes ¢ (e.g. € = 0.99) kann zu overfitting fihren
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8 Ausgleichsrechnung

Der Begriff “Ausgleichsrechnung” mag vielleicht nicht bekannt sein, jedoch macht die Englische Ubersetzung klar, was
der Inhalt dieses Abschnitts ist: Curve Fitting.

Wir werden also (unter anderem) Least-Squares-Probleme behandeln

8.1 Lineare Ausgleichsrechnung
Die Ansatz der Methode der kleinsten Quadrate ist (ausgedriickt mit Matrizen) ist min ||AZ — b||* und als Summe:

m ESIING
(a,c) = argmin Z lys —p' x; — q|?
pER™,gER i=1

Wobei y; die y-Koordinaten der Messpunkte zugehérig zu x; sind.

- haben wir die Funktionen numpy.polyfit (um ein Polynom zu fitten), oder die allgemeinere Methode

numpy.linalg.1lstsq. Um eine eindeutige Losung zu erhalten kénnen wir die Moore-Penrose (eine Art der Pseudoin-
versen) verwenden, wofiir numpy.linalg.pinv und numpy.linalg.pinv2 zur Verfigung stehen

8.1.1 Normalengleichung
Definition 8.1.9: (Normalengleichung) A" Az = AH

Bemerkung 8.1.10: A7 A ist Hermite-Symmetrisch, und falls A vollen Rank hat, dannn ist A A positiv-definit und

die Normalengleichung hat eine eindeutige Losung. Jedoch ist die Normalengleichung schlecht konditioniert (es gilt:
cond(A® A) = cond(A)?). Fiir gut konditionierte Matrizen ist dies kein Problem, jedoch ist die Normalengleichung fiir
schlecht konditionierte Matrizen ungeeignet.

Bemerkung 8.1.11: Man kann die Normalengleichung auch ohne die Berechnung von A¥ A berechnen:

A Ay =AM B m i= [ngf 61] m B [8}

fur r:= %(ACC —b) mit a > 0, dann kénnen wir B in obiger Gleichung durch B, = 740}1] 61] ersetzen, wobei wir a so

wéhlen, dass k(B,) minimal wird (Zur Erinnerung, « ist die Konditionszahl der Matrix).

8.1.2 Losung mittels orthogonaler Transformation

Nicht nur die Normalengleichungen, aber auch das LU-Verfahren kann fiir gewisse Matrizen (im Falle von LU sind es
Matrizen mit m > n) ungeeignet sein.

Wir versuchen wieder ||r||3 zu minimieren, mit r = Az — b. Mithilfe der QR-Zerlegung lasst sich ein Lésungsansatz

herleiten, der hohere numerische Stabilitat aufweist, als die Normalengleichungen. Sei A = QR = Q ﬁﬂ Dann, nach

Umformungen erhalten wir || Rz f’l;H% mit b = QHb.

Nutzt man beispielsweise Housholder-Spiegelungen zur Berechnung der QQ R-Zerlegung, so kann man die Transformatio-
nen direkt auf b anwenden und so kann man sich das Abspeichern der Matrix () komplett sparen.

Falls jedoch die Matrix A nicht vollen Rang hat (was sehr oft der Fall ist), dann ist es besser, die Singularwertzerlegung
zu verwenden. Dann ist:

Az = bl]2 = [[USV Tz = b|3 = [|SVH 2 — UTb||
- verwendet numpy.linalg.lstsq die SVD fiir das Losen

Definition 8.1.15: (Pseudoinverse) At = (A A)"1AH = ;5 rUH

Die drei bisher besprochenen Verfahren lassen sich in zwei Kategorien einordnen:
1. A e K™ ist voll besetzt und n ist klein (m > n)
2. A€ K™*™ ist diinn besetzt und m,n sind gross

Im ersten Fall wird aufgrund der numerischen Stabilitit die QR oder SVD-Methode verwendet. Im zweiten Fall verwendet
man die Normalengleichungen, da diese die Struktur der diinn besetzten Matrizen verwenden kdnnen.
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import numpy as np

A
b

np.array([[98.269, 1.0], [0.0, 1.0], [-194.96, 1.011)
np.array([852.7, 624.5, 172.7])

def least_squares_svd(A, b, epsilon=1le-6):
U, s, Vh = np.linalg.svd(A)
r = 1 + np.where(s / s[0] > epsilon) [0] .max() # numerical rank
y = np.dot(Vh[:r, :].T, np.dot(U[:, :r].T, b) / s[:r])
return y

# qr—decomposition:
def least_squares_qr(A, b):
Q, R = np.linalg.qr(A)
b_tilde = np.dot(Q.T, b)
return np.linalg.solve(R, b_tilde)

np.linalg.lstsq(A, b)

8.1.3 Totale Ausgleichsrechnung

Es kann vorkommen, dass sowohl die Matrix A, wie auch der Vektor b fehlerhaft sind. Dann ersetzen wir das System
Az = b durch ein neues System A% = b, welches so nah wie méglich am urspriinglichen System liegt und so fiir welches
gilt b € Bild(A).

Wir versuchen also die folgende Norm zu minimieren:

lo=Cllr = |14 5~ [4 3]

F
Das Problem lasst sich umschreiben als

min |C = C||r
Rang(C)=n

Theorem ?? liefert die Losung. Die Singularwertzerlegung
n+1

C=Usv¥ = Z oj(u);(v)F

gibt das Optimum

C=> o;(u);()
j=1
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8.2 Nichtlineare Ausgleichsrechnung

Es ist natiirlich auch méglich, dass das Modell fiir das Ausgleichsproblem nicht linear ist.

8.2.1 Newton-Verfahren

Aus der Analysis ist bekannt, dass fiir gesuchtes 2 € R™, so dass ®(x) minimal ist, eine notwendige Bedingung durch
grad(®(x)) = 0 gegeben ist.

Da wir also eine Nullstellensuche in R™ haben, konnen wir dies mit dem Newton-Verfahren lésen:
2* D) = 28 _(Dgrad(®(z))) " 'grad(®(z))
Da Hg(z) := D((grad)(®(x))) ist, haben wir also:
2D = 5 ®) _ (Hy () grad(®(x))

8.2.2 Gauss-Newton Verfahren
Direkt das Newton-Verfahren auf ein Problem anzuwenden kann unméglich oder schwer praktikabel sein.

Die Idee des Gauss-Newton Verfahrens ist es, die komplizierte Funktion F'(x) lokal durch eine lineare Funktion approxi-
miert, also:

F(z) = F(y) + DF(y)(z —y) = F(y) + DF(y)x — DF(y)y
Falls man A := DF(y) und b = DF(y)y — F(y) definiert, so erhalt man ein lineares Ausgleichsproblem:

1 1 1
argmin ||F'(x)|[3 =~ argmin_ ||F(y) + DF (y)z||3 = argmin_ || Az — b][3
zeRn 2 zern 2 zeRn 2
wobei y eine Naherung der Lésung x ist. Die lterationsvorschrift ist gegeben durch:

2D = 20 g mit s := argmin||F(z®)) — DF(z")z]|?

z€ER"

import numpy as np

def gauss_newton(start_vec, Func, Jacobian, tolerance):

# Start vector has to be chosen intelligently

s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec)) [0]

start_vec = start_vec - s

# now we perform the iteration

while np.linalg.norm(s) > tolerance * np.linalg.norm(start_vec):
# every time we update = by subtracting s, found with the least square method
s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec)) [0]
start_vec = start_vec - s

return start_vec

Der Vorteil ist, dass die zweite Ableitung nicht bendtigt wird, jedoch ist die Konvergenzordnung niedrieger (p < 2)
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Beispiel 8.2.3: Wir haben zwei Modellfunktionen, Fy(t) = aj + bie= 't and Fy(t) = ag — boe 2", (Fy ist ein Heiz-
vorgang, F5 ist ein Abkiihlvorgang). Untenstehender code berechnet die Lésung des nichtlinearen Ausgleichsproblems

import numpy as np

t = np.arange(0, 30, 5); n = len(t)

curr_heating = np.array([24.34, 18.93, 17.09, 16.27, 15.97, 15.91])
curr_cooling = np.array([9.66, 18.8, 22.36, 24.07, 24.59, 24.91])

# define the functions that have to be minimized

F_1 = lambda a: a[0] + a[1] * np.exp(-a[2] * t) - curr_heating

F_2 = lambda a: a[0] - a[1] * np.exp(-a[2] * t) - curr_cooling

# define the corresponding Jacobi matrices
def J_1(a):
mat = np.zeros((n, 3))
for k in range(n):
mat[k, 0] = 1.0
mat [k, 1] = np.exp(-t[k] * a[2])
mat [k, 2] = -t[k] * a[1] * np.exp(-t[k] * a[2])
return mat

def J_2(a):
mat = np.zeros((n, 3))
for k in range(n):
mat[k, 0] = 1.0
mat [k, 1] = -np.exp(-t[k] * a[2])
mat [k, 2] = t[k] * al[1] * np.exp(-t[k] * a[2])
return mat

# guess starting vector
np.array([10.0, 5.0, 0.0])
np.array([30.0, 10.0, 0.0])

x_1
x_2

# use the Gauss-Newton algorithm declared above

a_1l = gauss_newton(x_1, F_1, J_1, tolerance=10e-6)
a_2 = gauss_newton(x_2, F_2, J_2, tolerance=10e-6)
print("Heating ", a_1)
print("Cooling ", a_2)

5. Januar 2026 56 / 57



Numerical Methods for Computer Science Robin Bacher, Janis Hutz

8.2.3 Weitere Methoden: BFGS, GD, SGC, CG, LM, ADAM

Fiir unterschiedliche Probleme kénnen andere Funktionen giinstiger oder besser geeignet sein. Eine Liste einiger bekannter
Methoden:

= BFGS (basiert auf Broyden): D®(z(®)) = DF ()T F(z®), oder giinstiger mit D®(z*))T DF(2*))s =
DF(z® )T F(z(*)

= GD (Gradient Descent): s = A\, D®(z*)) (in ML wird \; als “Learning rate” bezeichnet)
= LM (Levenberg-Marquant): wir minimieren ||F (z(*))+DF(z*))||2+||s||3 (also werden kleine Schritte bevorzugt)

= CG (Conjugated Gradient): GD ist sehr langsam, aber auch giinstig. Mit hoheren Kosten kann durch Wahl von
s =Xz und zF = D®(2®)) + B2(k — 1) eine schnellere Konvergenz erreicht werden (Dampfung)

= ADAM Hier werden spezielle A und § gewahlt und liefert die einfache Iterationen
gD = b\ F

S(B+1) D@(x(k)) + Bz

- gibt es via scipy.optimize.leastsq eine Implementation mit verschiedenen lterationsmethoden, oder

alternativ scipy.optimize.minimize
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