Systems Programming and Computer Architecture Janis Hutz

Systems Programming and Computer
Architecture

Janis Hutz
https://janishutz.com

January 5, 2026

TITLE PAGE COMING SOON

“If you are using CMake to solve the exercises... First off, sorry that you like
CMake"

- Timothy Roscoe, 2025

HS2025, ETHZ
Summary of the Lectures and Lecture Slides

January 5, 2026 1/10

https://janishutz.com

Systems Programming and Computer Architecture Janis Hutz

Quotes

“An LLM is a lossy index over human statements”

- Professor Buhmann, Date unknown
“If you are using CMake to solve the exercises... First off, sorry that you like CMake"

“You can’t have a refrigerator behave like multiple refrigerators"

“Why is C++ called C++ and not ++C? It’s like you don’t get any value and then
it's incremented, which is true"

- Timothy Roscoe, 2025

January 5, 2026 2/10

Systems Programming and Computer Architecture Janis Hutz

1 The C Programming Language 4
1.1 BasiCs e 4
1.1.1 Control Flow e 5

1.1.2 Declarations L 6

1.1.3 Operators 7

114 Arrays 8

2 x86 Assembly 9
3 Hardware 10

January 5, 2026 3/10

Systems Programming and Computer Architecture Janis Hutz

1 The C Programming Language

I can clearly C why you'd want to use C. Already sorry in advance for all the bad C jokes that are going to be part of this section

C is a compiled, low-level programming language, lacking many features modern high-level programming languages offer,
like Object Oriented programming, true Functional Programming (like Haskell implements), Garbage Collection, complex
abstract datatypes and vectors, just to name a few. (It is possible to replicate these using Preprocessor macros, more
on this later).

On the other hand, it offers low-level hardware access, the ability to directly integrate assembly code into the .c files,
as well as bit level data manipulation and extensive memory management options, again just to name a few.

This of course leads to C performing excellently and there are many programming languages whose compiler doesn't
directly produce machine code or assembly, but instead optimized C code that is then compiled into machine code using
a C compiler. This has a number of benefits, most notably that C compilers can produce very efficient assembly, as lots
of effort is put into the C compilers by the hardware manufacturers.

There are many great C tutorials out there, a simple one (as for many other languages too) can be found

1.1 Basics

C uses a very similar syntax as many other programming languages, like Java, JavaScript and many more...to be
precise, it is them that use the C syntax, not the other way around. So:

File: 00_intro.c

// This is a line comment
/* this is a block comment */
#include "OI1_func.h" // Relative import

int i = 0; // This allocates an integer on the stack

int main(int argc, char xargv[]) {
// This 4s the function body of a function (here the main function)
// which serves as the entrypoint to the program in C and has arguments
printf("Argc: %d\n", argc); // Number of arguments passed, always >= 1
// (first argument is the exzecutable name)
for (int i = 0; i < argc; i++) // For loop just like any other sane programming language
printf("Arg %d: %s\n", i, argv[i 1); // Outputs the i-th argument from CLI

get_user_input_int("Select a number"); // Function calls as in any other language
return 0; // Return a POSIX exzit code

In C we are referring to the implementation of a function as a (function) definition (correspondingly, variable definition,
if the variable is initialized) and to the definition of the function signature (or variables, without initializing them) as the
(function) declaration (or, correspondingly, variable declaration).

C code is usuallt split into the source files, ending in .c (where the local functions and variables are declared, as well
as all function definitions) and the header files, ending in .h, usually sharing the filename of the source file, where the
external declarations are defined. By convention, no definition of functions are in the .h files, and neither variables, but
there is nothing preventing you from putting them there.

File: O01_func.h

#include <stdio.h> // Import from system path
// (like library imports in other languages)

int get_user_input_int(char prompt[]);

January 5, 2026 4 /10

https://www.w3schools.com/c/index.php

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

Systems Programming and Computer Architecture Janis Hutz

1.1.1 Control Flow

Many of the control-flow structures of C can be found in the below code snippet. A note of caution when using goto:
It is almost never a good idea (can lead to unexpected behaviour, is hard to maintain, etc). Where it however is very
handy is for error recovery (and cleanup functions) and early termination of multiple loops (jumping out of a loop). So,
for example, if you have to run multiple functions to set something up and one of them fails, you can jump to a label
and have all cleanup code execute that you have specified there. And because the labels are (as in Assembly) simply
skipped over during execution, you can make very nice cleanup code. We can also use continue and break statements
similarly to Java, they do not however accept labels. (Reminder: continue skips the loop body and goes to the next
iteration)

File: O01_func.c

#include "O01_func.h"
#include <stdio.h>

int get_user_input_int(char prompt[]) {
int input_data;
printf("Ys", prompt); // Always wrap strings like this for printf
scanf ("%d", &input_data); // Get user input from CLI
int input_data_copy = input_data; // Value copied

// If statements just like any other language
if (input_data)

printf("Not 0");
else

printf("Input is zero");

// Switch statements just like in any other language
switch (input_data) {
case b:
printf("You win!");
break; // Doesn't fall through
case 6:
printf("You were close"); // Falls through
default:
printf("No win"); // Case for any nmot covered input

while (input_data > 1) {
input_data -= 1;
printf("Hello World\n");

// Inversed while loop (exzecutes at least once)
do {
input_data -= 1;
printf("Bye World\n");
if (input_data_copy == 0)
goto this_is_a_label;
} while (input_data_copy > 1);

this_is_a_label:
printf("Jumped to label");
return 0;

January 5, 2026 5/ 10

20

21

22

23

24

25

26

27

28

29

30

31

32

Systems Programming and Computer Architecture Janis Hutz

1.1.2 Declarations

We have already seen a few examples for how C handles declarations. In concept they are similar (and scoping works
the same) to most other C-like programming languages, including Java.

File: 02_declarations.c

int my_int; // Allocates memory on the stack.

// Variable is global (read / writable by entire program)
static int my_local_int; // only available locally (in this file)
const int MY_CONST = 10; // constant (immutable), convention: SCREAM_ CASE

enum { ONE, TWO } num; // Enum. ONE will get wvalue 0, TWO has wvalue 1
enum { 0 =2, T=11} n; // Enum with values specified

// Structs are like classes, but contain no logic
struct MyStruct {

int ell;

int el2;
};

int fun(int j) {
static int i = 0; // Persists across calls of fun
short my_var = 1; // Block scoped (deallocated when going out of scope)
int my_var_dbl = (int) my_var; // Ezplicit casting (works between almost all types)

return i;

int main(int argc, char *argv([]) {
if ((my_local_int = fun(10))) {
// Every c statement is also an expression, i.e. you can do the above!

}

struct MyStruct test; // Allocate memory on stack for struct
struct MyStruct *test_p = &test; // Pointer to memory where test resides
test.ell = 1; // Direct element access

test_p->el2 = 2; // Via pointer

return 0;

A peculiarity of C is that the bit-count is not defined by the language, but rather the hardware it is compiled for.

C data type typical 32-bit ia32 x86-64
1

char 1
short 2 2
int 4 4
long 4 4
long long 8 8
float 4 4
double 4 8
long double 8 1

6

Table 1.1: Comparison of byte-sizes for each datatype on different architectures

By default, integers in C are signed, to declare an unsigned integer, use unsigned int. Since it is hard and annoying
to remember the number of bytes that are in each data type, C99 has introduced the extended integer types, which can

January 5, 2026 6 /10

Systems Programming and Computer Architecture Janis Hutz

be imported from stdint.h and are of form int<bit count>_t and uint<bit count>_t, where we substitute the
<bit count> with the number of bits (have to correspond to a valid type of course).

Another notable difference of C compared to other languages is that C doesn't natively have a boolean type, by
convention a short is used to represent it, where any non-zero value means true and 0 means false. Since boolean
types are quite handy, the ! syntax for negation turns any non-zero value of any integer type into zero and vice-versa.
C99 has added support for a bool type via stdbool.h, which however is still an integer.

Notably, C doesn’t have a very rigid type system and lower bit-count types are implicitly cast to higher bit-count data
types, i.e. if you add a short and an int, the short is cast to short (bits 16-31 are set to 0) and the two are added.
Explicit casting between almost all types is also supported. Some will force a change of bit representation, but most
won't (notably, when casting to and from float-like types, minus to void)

Another important feature is that every C statement is also an expression, see above code block for example.

The void type has no value and is used for untyped pointers and declaring functions with no return value

1.1.3 Operators

The list of operators in C is similar to the one of Java, etc. In Table 1.2, you can see an overview of the operators,
sorted by precedence in descending order. You may notice that the & and * operators appear twice. The higher
precedence occurrence is the address operator and dereference, respectively, and the lower precedence is bitwise and
and multiplication, respectively.

Very low precedence belongs to boolean operators && and | |, as well as the ternary operator and assignment operators
Operator Associativity
O mo->. Left-to-right
' 7 ++ —— + - x & (type) sizeof Right-to-left
* / h Left-to-right
+ - Left-to-right
<< >> Left-to-right
< <= >= > Left-to-right
== I= Left-to-right
& (logical and) Left-to-right
" (logical xor) Left-to-right
| (logical or) Left-to-right
&& (boolean and) Left-to-right
|| (boolean or) Left-to-right
? : (ternary) Right-to-left
= 4= -= %= [= = &= "=—= <<= >>= Right-to-left
, Left-to-right

Table 1.2: C operators ordered in descending order by precedence

Associativity
= Left-to-right: A+ B+Cw— (A+B)+C
» Right-to-left: A += B += C+— (A += B) += C
As it should be, boolean and, as well as boolean or support early termination.
The ternary operator works as in other programming languages result = expr 7 res_true : res_false;
As previously touched on, every statement is also an expression, i.e. the following works
printf ("%s", x = foo(y)); // prints output of foo(y) and z has that value

Pre-increment (++1, new value returned) and post-increment (i++, old value returned) are also supported by C.

January 5, 2026 7 /10

Systems Programming and Computer Architecture Janis Hutz

1.1.4 Arrays

C compiler does not do any array bound checks! Thus, always check array bounds. Unlike some other programming
languages, arrays are not dynamic length.

The below snippet includes already some pointer arithmetic tricks. The variable data is a pointer to the first element
of the array.

File: 03_arrays.c

#include <stdint.h>
#anclude <stdio.h>

int main(int argc, char xargv[]) {

int datal 10 1; // Initialize array of 10 integers
datal[5] = 5; // element 5 is nmow 5

*data = 10; // element 0 is mow 5

printf("%d\n", datal 0]); // print element 0 (prints 10)
printf("%d\n", *data); // equivalent as above

printf("%d\n", datal 51); // print element 5 (prints 5)
printf("Yd\n", *(data + 5)); // equivalent as above

int multidim[5 1[5 1; // 2-dimensional array

// We can iterate over it using two for-loops
return 0;

January 5, 2026 8 /10

Systems Programming and Computer Architecture Janis Hutz

2 x86 Assembly

January 5, 2026 9/10

Systems Programming and Computer Architecture Janis Hutz

3 Hardware

January 5, 2026 10 / 10

	The C Programming Language
	Basics
	Control Flow
	Declarations
	Operators
	Arrays

	x86 Assembly
	Hardware

