
Theoretical Computer Science - Compact Janis Hutz

Theoretical Computer Science -
Compact

Janis Hutz
https://janishutz.com

December 31, 2025

q0, p0start q0, p1 q0, p2

q1, p0 q1, p1 q1, p2

q2, p0 q2, p1 q2, p2

a a

a

b b b

a a
ab

b
b

a a

a

b b b

“Sie können also alle C Programme in Kanonischer Ordnung aufzählen. Sollten
Sie dies tun? Wahrscheinlich nicht. Was aber zählt ist, sie können es tun”

- Prof. Dr. Dennis Komm, 2025

HS2025, ETHZ

Compact Summary of the book Theoretische Informatik
by Prof. Dr. Juraj Hromkovic

December 31, 2025 1 / 14

https://janishutz.com
https://link.springer.com/book/10.1007/978-3-658-06433-4

Theoretical Computer Science - Compact Janis Hutz

Contents

1 Introduction 2

2 Alphabets, Words, etc 3
2.2 Alphabets, Words, Languages . 3
2.4 Kolmogorov-Complexity . 3

3 Finite Automata 4
3.2 Representation . 4
3.4 Proofs of nonexistence . 5
3.5 Non-determinism . 6

4 Turing Machines 7
4.3 Representation . 7
4.4 Multi-tape TM and Church’s Thesis . 7
4.5 Non-Deterministic Turing Machines . 7

5 Computability 8
5.2 Diagonalization . 8
5.3 Reductions . 9
5.4 Rice’s Theorem . 10
5.6 The method of the Kolmogorov-Complexity . 10

6 Complexity 11
6.2 Measurements of Complexity . 11
6.3 Complexity classes . 11
6.4 Non-deterministic measurements of complexity . 12
6.5 Proof verification . 12
6.6 NP-Completeness . 13

7 Grammars 14

1 Introduction

This summary aims to provide a simple, easy to understand and short overview over the topics covered, with
approaches for proofs, important theorems and lemmas, as well as definitions.

It does not aim to serve as a full replacement for the book or my main summary, but as a supplement to both of
them.

It also lacks some formalism and is only intended to give some intuition, six pages are really not enough for a
formal and complete overview of the topic.

As general recommendations, try to substitute possibly “weird” definitions in multiple choice to see a definition
from the book.

All content up to Chapter 5.3 is relevant for the midterm directly.

The content for the endterm exam as of HS2025 starts in Chapter 5.3. All prior content is still relevent to the
extent that you need an understanding of the concepts treated there

December 31, 2025 2 / 14

Theoretical Computer Science - Compact Janis Hutz

2 Alphabets, Words, etc

2.2 Alphabets, Words, Languages

Definition 2.1: (Alphabet) Set Σ. Important alphabets: Σbool, Σlat (all latin chars), ΣKeyboard (all chars on
keyboard), Σm (m-ary numbers)

Definition 2.2: (Word) Possibly empty (denoted λ) sequences of characters from Σ. |w| is the length, Σ∗ is the
set of all words and Σ+ = Σ∗ − {λ}

Definition 2.3: (Konkatenation) Kon(x, y) = xy, (so like string concat). (xy)n is n-times repeated concat.

Definition 2.4: (Reversal) aR, simply read the word backwards.

Definition 2.6: (Prefix, Suffix, Subword) v in w = vy; s in w = xs; Subword u in w = xuy; x, y possibly λ

Definition 2.7: (Appearance) |x|a is the number of times a ∈ Σ appears in x

Definition 2.8: (Canonical ordering) Ordered by length and then by first non-common letter:

u < v ⇐⇒ |u| < |v| ∨ (|u| = |v| ∧ u = x · si · u′ ∧ v = x · sj · v′) for any x, u′, v′ ∈ Σ∗ and i < j

Definition 2.9: (Language) L ⊆ Σ∗, and we define LC = Σ∗ − L as the complement, with L∅ being the empty
language, whereas Lλ is the language with just the empty word in it.

Concatenation : L1 · L2 = {vw|v ∈ L1 ∧ w ∈ L2} and Li+1 = Li · L ∀i ∈ N.

Cleen Star : L∗ =
⋃

i∈N Li and L+ = L · L∗

Of note is that there are irregular languages whose Cleen Star is regular, most notably, the language L = {w ∈
{0}∗ | |w| is prime}’s Cleen Star is regular, due to the fact that the prime factorization is regular

Lemma 2.1: L1L2 ∪ L1L2 = L1(L2 ∪ L3) Lemma 2.2: L1(K2 ∩ L3) ⊆ L1L2 ∩ L1L3

For multiple choice questions, really think of how the sets would look to determine if they fulfill a requirement.

2.4 Kolmogorov-Complexity

Definition 2.17: (Kolmogorov-Complexity) K(x) for x ∈ (Σbool)
∗ is the minimum of all binary lengths of Pascal

programs that output x, where the Program doesn’t have to compile, i.e. we can describe processes informally

Lemma 2.4: For each word x exists constant d s.t. K(x) ≤ |x|+ d, for which we can use a program that simply
includes a write(x) command

Definition 2.18: (Of natural number) K(n) = K(Bin(x)) with |Bin(x)| = ⌈log2(x+ 1)⌉

Lemma 2.5: For each n ∈ N∃wn ∈ (Σbool)
n s.t. K(wn) ≥ |wn| = n, i.e. exists a non-compressible word.

Theorem 2.1: Kolmogorov-Complexity doesn’t depend on programming language. It only differs in constant

Definition 2.19: (Randomness) x ∈ (Σbool)
∗ random if K(x) ≥ |x|, thus for n ∈ N, K(n) ≥ ⌈log2(n+ 1)⌉ − 1

Theorem 2.3: (Prime number) lim
n→∞

Prime(n)
n

ln(n)

= 1 with Prime(n) the number of prime numbers on [0, n] ⊆ N

Proofs Proofs in which we need to show a lower bound for Kolmogorov-Complexity (almost) always work as

follows: Assume for contradiction that there are no words with K(w) > f for all w ∈ W . We count the number
m of words in W and the number n of programs of length ≤ f (f being the given, lower bound). We will have
m − n > 0, which means, there are more different words than there are Programs with Kolmogorov-Complexity
≤ f , which is a contradiction to our assumption.

There are
⌊
n
k

⌋
+ 1 numbers divisible by k in the set {0, 1, . . . , n}.

Laws of logarithm
• loga(x) + loga(y) = loga(x · y)
• loga(x)− loga(y) = loga(x÷ y)

• y loga(x) = loga(x
y)

• loga(x) =
ln(x)
ln(a)

• loga(1) = 0

December 31, 2025 3 / 14

Theoretical Computer Science - Compact Janis Hutz

3 Finite Automata

3.2 Representation

We can note the automata using graphical notation similar to graphs or as a series of instructions like this:

select input = a1 goto i1
...

input = ak goto ik

Definition 3.1: (Finite Automaton) A = (Q,Σ, δ, q0, F) with
• Q set of states
• Σ input alphabet
• δ(q, a) = p transition from q on reading a to p

• q0 initial state
• F ⊆ Q accepting states
• LEA regular languages (accepted by FA)

δ̂(q0, w) = p is the end state reached when we process word w from state q0, and (q, w) M
∗

(p, λ) is the formal

definition, with M
∗

representing any number of steps M executed (transitive hull).

The class Cl[qi] represents all possible words for which the FA is in this state. Be cautious when defining them,
make sure that no extra words from other classes could appear in the current class, if this is not intended.

Sometimes, we need to combine two (or more) FA to form one larger one. We can do this easily with product
automata. To create one from two automata M1 (states qi) and M2 (states pj) we do the following steps:

1. Write down the states as tuples of the form (qi, pj) (i.e. form a grid by writing down one of the automata
vertically and the other horizontally)

2. From each state, the automata on the horizontal axis decides for the input symbol if we move left or right,
whereas the automata on the vertical axis decides if we move up or down.

q0, p0start q0, p1 q0, p2

q1, p0 q1, p1 q1, p2

q2, p0 q2, p1 q2, p2

a a

a

b b b

a a
ab

b
b

a a

a

b b b

For the automata

p0start p1 p2
a a

a

b b b

(a) Module to compute |w|b ≡ |w|(mod 3). States q ∈ Qa

q0start q1 q2
b

a

b

a b a

(b) Module to compute w contains sub. ba and ends in a.
States p ∈ Qb

Figure 3.1: Graphical representation of the Finite Automaton of Task 9 in 2025

December 31, 2025 4 / 14

Theoretical Computer Science - Compact Janis Hutz

3.4 Proofs of nonexistence

We have three approaches to prove non-regularity of words. Below is an informal guide as to how to do proofs
using each of the methods and possible pitfalls.

For all of them start by assuming that L is regular.

Lemma 3.3

Regular words Lemma 3.3

Let A be a FA over Σ and let x ̸= y ∈ Σ∗, such that δ̂A(q0, x) = δ̂(q0, y). Then for each z ∈ Σ∗ there exists
an r ∈ Q, such that xz, yz ∈ Cl[r], and we thus have

xz ∈ L(A) ⇐⇒ yz ∈ L(A)

1. Pick a FA A over Σ and say that L(A) = L
2. Pick |Q|+ 1 words x such that xy = w ∈ L with |y| > 0.

3. State that via pigeonhole principle there exists w.l.o.g i < j ∈ {1, . . . , |Q|+ 1}, s.t. δ̂A(q0, xi) = δ̂A(q0, xj).
4. Build contradiction by picking z such that xiz ∈ L.
5. Then, if z was picked properly, since i < j, we have that xjz /∈ L, since the lengths do not match

That is a contradiction, which concludes our proof

Pumping Lemma

Pumping-Lemma für reguläre Sprachen Lemma 3.4

Let L be regular. Then there exists a constant n0 ∈ N, such that each word w ∈ Σ∗ with |w| ≥ n0 can be
decomposed into w = yxz, with
(i) |yx| ≤ n0

(ii) |x| ≥ 1
(iii) For X = {yxkz | k ∈ N} either X ⊆ L or

X ∩ L = ∅ applies

1. State that according to Lemma 3.4 there exists a constant n0 such that |w| ≥ n0.
2. Choose a word w ∈ L that is sufficiently long to enable a sensible decomposition for the next step.
3. Choose a decomposition, such that |yx| = n0 (makes it quite easy later). Specify y and x in such a way that

for |y| = l and |x| = m we have l +m ≤ n0

4. According to Lemma 3.4 (ii), m ≥ 1 and thus |x| ≥ 1. Fix z to be the suffix of w = yxz
5. Then according to Lemma 3.4 (iii), fill in for X = {yxkz | k ∈ N} we have X ⊆ L.
6. This will lead to a contradiction commonly when setting k = 0, as for a language like 0n1n, we have

0(n0−m)+km1n0 as the word (with n0 −m = l), which for k = 0 is u = 0n0−m1n0 and since m ≥ 1, u /∈ L and
thus by Lemma 3.4, X ∩ L = ∅, but that is also not true, as the intersection is not empty (for k = 1)

Kolmogorov Complexity

1. We first need to choose an x such that Lx = {y | xy ∈ L}. If not immediately apparent, choosing x = aα+1

for a ∈ Σ and α being the exponent of the exponent of the words in the language after a variable rename.
For example, for {0n2+2n | n ∈ N}, α(m) = m2 +2m. Another common way to do this is for languages of the
form {anbn | n ∈ N} to use x = am and L0m = {y | 0my ∈ L} = {0j1m+j | j ∈ N}.

2. Find the first word y1 ∈ Lx. In the first example, this word would be y1 = 0(m+1)2·2(m+1)−m2·2m+1, or in
general aα(m+1)−α(m)+1. For the second example, the word would be y1 = 1m, i.e. with j = 0

3. According to Theorem 3.1, there exists constant c such that K(yk) ≤ ⌈log2(k + 1)⌉ + c. We often choose
k = 1, so we have K(y1) ≤ ⌈log2(1 + 1)⌉+ c = 1 + c and with d = 1 + c, K(y1) ≤ d

4. This however leads to a contradiction, since the number of programs with length ≤ d is at most 2d and thus
finite, but our set Lx is infinite.

December 31, 2025 5 / 14

Theoretical Computer Science - Compact Janis Hutz

Minimum number of states

To show that a language needs at least n states, use Lemma 3.3 and n words. We thus again do a proof by
contradiction:

1. Assume that there exists FA with |Q| < n. We now choose n words (as short as possible), as we would for
non-regularity proofs using Lemma 3.3 (i.e. find some prefixes). It is usually beneficial to choose prefixes with
|w| small (consider just one letter, λ, then two and more letter words). An “easy” way to find the prefixes is
to construct a finite automaton and then picking a prefix from each class

2. Construct a table for the suffixes using the n chosen words such that one of the words at entry xij is in the
language and the other is not. (n× n matrix, see below in example)

3. Conclude that we have reached a contradiction as every field xij contains a suffix such that one of the two
words is in the language and the other one is not.

Example 3.1: Let L = {x1y | x ∈ (Σbool)
∗, y ∈ {0, 1}2}. Show that any FA that accepts L needs at least four

states.

Assume for contradiction that there exists EA A = (Q,Σbool, δA, q0, F) with |Q| < 4. Let’s take the 4 words
00, 01, 10, 11. Then according to Lemma 3.3, there needs to exist a z such that xz ∈ L(A) ⇐⇒ yz ∈ L(A) with

δ̂A(q0, x) = δ̂A(q0, y) for x, y ∈ {00, 01, 10, 11}.

This however is a contradiction, as we can find a z for each of the pairs (x, y), such that xz ∈ L(A), but yz /∈ L(A).
See for reference the below table (it contains suffixes z fulfilling prior condition):

00 01 10 11

00 - 00 0 0
01 - 0 0
10 - 00
11 -

Thus, all four words have to lay in pairwise distinct states and we thus need at least 4 states to detect this language.

3.5 Non-determinism

The most notable differences between deterministic and non-deterministic FA is that the transition function is
different: δ : Q×Σ → P(Q). I.e., there can be any number of transitions for one symbol of Σ for each state. This
is (in graphical notation) represented by arrows that have the same label going to different nodes.

It is also possible for there to not be a transition function for a certain element of the input alphabet. In that case,
regardless of state, the NFA rejects, as it “gets stuck” in a state and can’t finish processing.

Additionally, the NFA accepts x if it has at least one accepting calculation on x.

Theorem 3.2: For every NFA M there exists a FA A such that L(M) = L(A). They are then called equivalent

Potenzmengenkonstruktion States are no now sets of states of the NFA in which the NFA could be in after

processing the preceding input elements and we have a special state called qtrash.

For each state, the set of states P = δ̂(q0, z) for |z| = n represents all possible states that the NFA could be in
after doing the first n calculations.

Correspondingly, we add new states if there is no other state that is in the same branch of the calculation tree
BM (x). So, in other words, we execute BFS on the calculation tree.

December 31, 2025 6 / 14

Theoretical Computer Science - Compact Janis Hutz

4 Turing Machines

4.3 Representation

Turing machines are much more capable than FA and NFA. A full definition of them can be found in the book on
pages 96 - 98 (= pages 110 - 112 in the PDF).

For example, to detect a recursive language like {0n1n | n ∈ N} we simply replace the left and rightmost symbol
with a different one and repeat until we only have the new symbol, at which point we accept, or there are no more
0s or 1s, at which point we reject.

The Turing Machines have an accepting qaccept and a rejecting state qreject and a configuration is an element of
{{¢} · Γ∗ ·Q · Γ+ ∪Q · {¢} · Γ+} with · being the concatenation and ¢ the marker of the start of the band.

LRE = {L(M) |M is a TM}
LR = {L(M) |M is a TM and it always halts}

4.4 Multi-tape TM and Church’s Thesis

k-Tape Turing machines have k extra tapes that can be written to and read from, called memory tapes. They
cannot write to the input tape. Initially the memory tapes are empty and we are in state q0. All read/write-heads
of the memory tapes can move in either direction, granted they have not reached the far left end, marked with ¢.

As with normal TMs, the Turing Machine M accepts w if and only if M reaches the state qaccept and rejects if it
does not terminate or reaches the state qreject

Lemma 4.1: There exists an equivalent 1-Tape-TM for every TM.

Lemma 4.2: There exists an equivalent TM for each Multi-tape TM.

Church’s Thesis states that the Turing Machines are a formalization of the term “Algorithm”. It is the only axiom
specific to Computer Science.

All the words that can be accepted by a Turing Machine are elements of LRE and are called recursively enu-
merable .

4.5 Non-Deterministic Turing Machines

The same ideas as with NFA apply here. The transition function also maps into the power set:

δ : (Q− {qaccept, qreject})× Γ → P(Q× Γ× {L,R,N})
Again, when constructing a normal TM from a NTM (which is not required at the Midterm, or any other exam
for that matter in this course), we again apply BFS to the NTM’s calculation tree.

Theorem 4.2: For an NTM M exists a TM A s.t. L(M) = L(A) and if M doesn’t contain infinite calculations
on words of (L(M))C , then A always stops.

December 31, 2025 7 / 14

Theoretical Computer Science - Compact Janis Hutz

5 Computability

5.2 Diagonalization

The set of binary encodings of all TMs is denoted KodTM and KodTM ⊆ (Σbool)
∗ and the upper bound of

the cardinality is |(Σbool)
∗|, as there are infinitely many TMs.

Below is a list of countable objects. They all have corresponding Lemmas in the script, but omitted here:
• Σ∗ for any Σ • KodTM • N× N • Q+

The following objects are uncountable: [0, 1], R, P((Σbool)
∗)

Corollary 5.1: |KodTM| < |P((Σbool)
∗)| and thus there exist infinitely many not recursively enumerable lan-

guages over Σbool

Theorem 5.3: Ldiag /∈ LRE

Proof of L (not) recursively enumerable

Proving that a language is recursively enumerable is as difficult as providing a Turing Machine that accepts it.

Proving that a language is not recursively enumerable is likely easier. For it, let dij = 1 ⇐⇒ Mi accepts wj .

Example 5.1: Assume towards contradiction that Ldiag ∈ LRE . Let

Ldiag = {w ∈ (Σbool)
∗ | w = wi for an i ∈ N− {0} and Mi does not accept wi}

= {w ∈ (Σbool)
∗ | w = wi for an i ∈ N− {0} and dii = 0}

Thus assume that, Ldiag = L(M) for a Turing Machine M . Since M is a Turing Machine in the canonical ordering
of all Turing Machines, so there exists an i ∈ N− {0}, such that M = Mi.

This however leads to a contradiction, as wi ∈ Ldiag ⇐⇒ dii = 0 ⇐⇒ wi /∈ L(Mi).

In other words, wi is in Ldiag if and only if wi is not in L(Mi), which contradicts our statement above, in which
we assumed that Ldiag ∈ LRE .

In other, more different, words, wi being in Ldiag implies (from the definition) that dii = 0, which from its definition
implies that wi /∈ L(Mi). □

Another result (not formally proven in the script, but there is a proof by intimidation) that can come in useful,
especially when trying to show L /∈ LRE is:

L,LC ∈ LRE ⇐⇒ L ∈ LR

Additionally, as a reminder, LRE = {L(M) |M is a TM}, so to prove that a language L /∈ LRE , we only need to
show that there exists no TM M , for which L(M) ∈ LRE .

December 31, 2025 8 / 14

Theoretical Computer Science - Compact Janis Hutz

5.3 Reductions

This is the start of the topics that are explicitly part of the endterm.

For the reductions, it is important to get the order right.
To show that a language L1 is not part of e.g. LR, show that there exists a reduction into a language L2 /∈ LR,
i.e. e.g. show L2 ≤R L1.
To show that a language L1 is part of e.g. LR, show that there exists a reduction into a language L2 ∈ LR, i.e.
e.g. show L1 ≤R L2.

For a language to be in LR, in contrast to L ∈ LRE , the TM has to halt also for no instances, i.e. it has to
be an algorithm. In other words: A TM A can enumerate all valid strings of a recursively enumerable language
(L ∈ LRE), where for recursive languages, it has to be able to difinitively answer for both yes and no and thus
halt in finite time for both.

First off, a list of important languages for this and the next section:

• LU = {Kod(M)#w | w ∈ (Σbool)
∗ and TM M accepts w} (∈ LRE , but /∈ LR)

• LH = {Kod(M)#x | x ∈ (Σbool)
∗ and TM M halts on x} (∈ LRE , but /∈ LR)

• Ldiag = {w ∈ (Σbool)
∗ | w = wi for an i ∈ N− {0} and Mi does not accept wi} (/∈ LRE and thus /∈ LR)

• (Ldiag)
C (∈ LRE , but /∈ LR)

• LEQ = {Kod(M)#Kod(M) | L(M) = L(M)} (/∈ LRE , and thus /∈ LR)

• (LEQ)
C = {Kod(M)#Kod(M) | L(M) ̸= L(M)} (/∈ LRE , and thus /∈ LR)

• Lempty = {Kod(M) | L(M) = ∅} (∈ LRE , but /∈ LR)

• (Lempty)
C = {x ∈ (Σbool)

∗ | x /∈ Kod(M)∀ TM M or x = Kod(M) and L(M) ̸= ∅} (∈ LRE , but /∈ LR)

• LH,λ = {Kod(M) |M halts on λ} (∈ LRE , but /∈ LR)

An important consequence of the fact that both LEQ and its complement are /∈ LRE is that it is not guaranteed
for a language’s complement to necessarily be in LRE , if the language is not.

Definition 5.3: (Recursively reducible languages) L1 ≤R L2 (L1 reducible into L2), if L2 ∈ LR ⇒ L1 ∈ LR

Definition 5.4: (EE-Reductions) L1 ≤EE L2 if there exists a TM M that implements image fM : Σ∗
1 → Σ∗

2, for
which we have x ∈ L1 ⇔ fM (x) ∈ L2 for all x ∈ (Σbool)

∗
1

Lemma 5.3: If L1 ≤EE L2 then also L1 ≤R L2

Lemma 5.4: For each language L ⊆ Σ∗ we have: L ≤R LC and LC ≤R L

Theorem 5.6: (Universal TM) A TM U , such that L(U) = LU

Showing reductions First, a general guide to reductions and below what else we need to keep in mind for

specific reductions:

1. We construct a TM A that:

(a) Checks if the input has the right form and if it does not, returns some output that is /∈ L2

(b) Applies the transformation to all remaining input

2. We show x ∈ L1 ⇔ A(x) ∈ L2 by showing the implications:

(a) For ⇒, we show it directly, by assuming that x ∈ L1 (obviously) and we can ignore the invalid input
(as that /∈ L1 anyway)

(b) For ⇐, we have two options (mention what happens to invalid input here):

• We show A(x) ∈ L2 ⇒ x ∈ L1 directly (usually harder)

• We show x /∈ L1 ⇒ A(x) /∈ L2 (contraposition)

3. Show that the TM always halts (for P , EE and R reductions at least)

December 31, 2025 9 / 14

Theoretical Computer Science - Compact Janis Hutz

EE-reductions They follow the above scheme exactly

R-reductions It is usually a good idea to draw the setup here. We have a TM C that basically executes an
EE-reduction and we have a TM A that can check L2. Then, we have a TM B that wraps the whole thing: It first
executes TM C, which will either output an transformation of L1 for L2 (i.e. execute an EE-reduction) or output
some encoding for invalid word. If it outputs the encoding for invalid word, B will output x /∈ L1.

If C does not output an encoding for invalid word, then B will execute A on the output of C and then use the
output of A (either accepting or rejecting) to output the same (i.e. if A accepts, then B will output x ∈ L1 and if
A rejects, B outputs x /∈ L1)

Intuition: In R-reductions, we construct a full verifier for L1 using the verifier for L2, i.e. we can use TM B
directly to check if a given word is in L1 given that the transformed word is also in L2.

P -reductions (Used in Chapter 6). We need to also show that A terminates in polynomial time.

Tips & Tricks:

• The TM A has to terminate always

• Check the input for the correct form first

• For the correctness, show x ∈ L1 ⇔ A(x) ∈ L2

• The following tricks can be useful:

– Transitions into qaccept and qreject can be redirected to qaccept/qreject or into an infinite loop

– Construct TM M ′ that ignores input and does the same, regardless of input

• Generate encoding of a TM with special properties (e.g. accepts all input, never halts, . . .)

5.4 Rice’s Theorem

Definition 5.7: L is called a semantically non-trivial decision problem , if these conditions apply:

(i) There exists a TM M1, such that Kod(M1) ∈ L (i.e. L ̸= ∅)

(ii) There exists a TM M2, such that Kod(M2) /∈ L (not all encodings are in L)

(iii) For two TM A and B: L(A) = L(B) ⇒ Kod(A) ∈ L ⇒ Kod(B) ∈ L

Theorem 5.9: (Rice’s Theorem) Every semantically non-trivial decision problem over TMs is undecidable

Using Rice’s Theorem We only need to show that a language is semantically non-trivial, which we do by

checking the above conditions. For the third condition, intuitively, we only need to check if in the definition of L
only L(M) appears and nowhere M directly (except of course, to say that M has to be a TM), or the condition
can be restated such that only L(M) is described by it.

For a more formal proof of that condition, simply show that the implication holds

5.6 The method of the Kolmogorov-Complexity

Theorem 5.10: The problem of computing the Kolmogorov-Complexity K(x) for each x is algorithmically un-
solvable.

Lemma 5.5: If LH ∈ LR, then there exists an algorithm to compute the Kolmogorov-Complexity K(x) for each
x ∈ (Σbool)

∗

As of HS2025, chapters 5.5 and 5.7 are not relevant for the Endterm or Session exam, so they are omitted here

December 31, 2025 10 / 14

Theoretical Computer Science - Compact Janis Hutz

6 Complexity

6.2 Measurements of Complexity

D 6.1: (Time complexity) For a computation D = C1, . . . , Ck of M on x is defined by TimeM (x) = k − 1. For
the TM M itself, we have TimeM (n) = max{TimeM (x) | x ∈ Σn}

Space complexity Definition 6.2

Let C = (q, x, i, α1, i1, . . . , αk, ik), with 0 ≤ i ≤ |x|+1 and 0 ≤ ij ≤ |αj | for j = 1, . . . , k be a configuration.
The space complexity of configuration C is SpaceM (C) = max{|αi| | i = 1, . . . , k}.
The space complexity of a calculation D = C1, . . . , Cl on x is SpaceM (x) = max{SpaceM (Ci) | i = 1, . . . , l}
The space complexity of a TM M is SpaceM (n) = max{SpaceM (x) | x ∈ Σn}

Lemma 6.1: For every k-tape-TM A, there exists an equivalent 1-tape-TM B such that SpaceB(n) ≤ SpaceA(n)

Lemma 6.2: For every k-tape-TM A, ∃ a k-tape-TM such that L(A) = L(B) and SpaceB(n) ≤
SpaceA(n)

2 + 2

Definition 6.3: The big-O-notation is defined as in A&D, we however write TimeA(n) ∈ O (g(n)), etc

Theorem 6.1: There exists decision problem (Σbool, L), such that for each MTM A that decides it, there exists
an MTM B that also decides it and for which TimeB(n) ≤ log2(TimeA(n))

Definition 6.4: An MTM C is optimal for L, if TimeC(n) ∈ O (f(n)) and Ω (() f(n)) is a lower bound for the
time complexity of L

6.3 Complexity classes

Below is a list of complexity classes

Complexity classes Definition 6.5

TIME(f) = {L(B) | B is an MTM with TimeB(n) ∈ O (f(n))}
SPACE(g) = {L(A) | A is an MTM with SpaceA(n) ∈ O (g(n))}

DLOG = SPACE(log2(n))

P =
⋃
c∈N

TIME(nc)

PSPACE =
⋃
c∈N

SPACE(nc)

EXPTIME =
⋃
d∈N

TIME(2n
d

)

Lemma 6.3: For any function t : N → R+, we have TIME(t(n)) ⊆ SPACE(t(n)).

A list of relationships for these classes:

• P ⊆ PSPACE

• DLOG ⊆ P

• PSPACE ⊆ EXPTIME

• DLOG ⊆ P ⊆ PSPACE ⊆ EXPTIME

Space- and time-constructible Definition 6.6

Let s, t : N → N. s is called space-constructible if there exists 1-Band-TM M , such that
1. SpaceM (n) ≤ s(n) ∀n ∈ N
2. for each input 0n with n ∈ N, M generates the word 0s(n) on its memory tape and stops in qaccept

t is called time-constructible , if there exists an MTM A, such that
1. TimeA(n) ∈ O (t(n))
2. For each input 0n with n ∈ N, A generates 0t(n) on its first memory tape and stops in qaccept

December 31, 2025 11 / 14

Theoretical Computer Science - Compact Janis Hutz

Lemma 6.4: Let s be space-constructible, M an MTM with SpaceM (x) ≤ s(|x|) ∀x ∈ L(M). Then exists MTM
A with L(A) = L(M) and SpaceA(n) ≤ s(n), i.e. we have SpaceA(y) ≤ s(|y|) ∀y ∈ ΣM .

Lemma 6.5: Let t be time-constructible, M an MTM with TimeM (x) ≤ t(|x|) ∀x ∈ L(M). Then exists MTM A
with L(A) = L(M) and TimeA(n) ∈ O (t(n))

Theorem 6.2: ∀s : N → N with s(n) ≥ log2(n), we have SPACE(s(n)) ⊆
⋃

c∈N TIME(cs(n))

Theorem 6.3: Given s1, s2 : N → N with properties s2(n) ≥ log2(n), s2 is space-constructible and s1(n) =
o(s2(n)) (s2(n) grows asymptotically faster than s1). Then we have SPACE(s1) ⊊ SPACE(s2)

Theorem 6.4: Given t1, t2 : N → N with properties t2 is time-constructible and t1(n) · log2(t1(n)) = o(t2(n))
Then we have TIME(s1) ⊊ TIME(s2)

6.4 Non-deterministic measurements of complexity

Definition 6.7: For NMTM or NTM, the time complexity is the length of the shortest accepting calculation of
M on x and the same applies to space complexity as well. The rest of the definition is equivalent to the one for
deterministic TM and MTM.

Complexity classes Definition 6.8

For all f, g : N → R+, we define

NTIME(f) = {L(M) |M is an NMTM with TimeM (n) ∈ O (f(n))}
NSPACE(g) = {L(M) |M is an NMTM with SpaceM (n) ∈ O (g(n))}

NLOG = NSPACE(log2(n))

NP =
⋃
c∈N

NTIME(nc)

NPSPACE =
⋃
c∈N

NSPACE(nc)

Lemma 6.6: For all t and s with s(n) ≥ log2(n): NTIME ⊆ NSPACE(t) and NSPACE(s) ⊆
⋃

c∈N NTIME(cs(n))

For t : N → R+ and every space-constructible s with s(n) ≥ log2(n), we have:

1. TIME(t) ⊆ NTIME(t)

2. SPACE(t) ⊆ NSPACE(t)

3. NTIME(s(n)) ⊆ SPACE(s(n)) ⊆
⋃

c∈N TIME(cs(n))

4. NP ⊆ PSPACE

5. NSPACE(s(n)) ⊆
⋃

c∈N TIME(cs(n))

6. NLOG ⊆ P

7. NPSPACE ⊆ EXPTIME

8. NSPACE(s(n)) ⊆ SPACE(s(n)2) (Savitch)

9. PSPACE = NPSPACE

If we combine some of the above results, we get:

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

6.5 Proof verification

p-Verifier Definition 6.9

And MTM A is a p-Verifier (for p : N → N) and V (A) = L for L ⊆ Σ∗, if A has the following properties
and works on all inputs Σ∗ × (Σbool)

∗:
(i) TimeA(w, x) ≤ p(|w|) for each input (w, x) ∈ Σ∗ × (Σbool)

∗

(ii) ∀w ∈ L, ∃x ∈ (Σbool)
∗, such that |x| ≤ p(|w|) and (w, x) ∈ L(A). x is proof of the claim w ∈ L

(iii) ∀y /∈ L we have (y, z) /∈ L(A) for all z ∈ (Σbool)
∗

(iv) If p(n) ∈ O
(
nk

)
, k ∈ N, then p is a polynomial time verifier. The class of polynomial time verifiers is

V P = {V (A) | A is polynomial time verifier }

Theorem 6.5: V P = NP

December 31, 2025 12 / 14

Theoretical Computer Science - Compact Janis Hutz

6.6 NP-Completeness

Definition 6.10: (Polynomial Reduction) L1 ≤p L2, if there exists polynomial TM A with x ∈ L1 ⇔ A(x) ∈ L2.
A is called a polynomial reduction of L1 into L2

NP -Hard and NP -Complete Definition 6.11

A language L is called NP -hard, if for all L′ ∈ NP , we have L′ ≤p L
A language L is called NP -complete, if it is NP -hard and and L ∈ NP

Lemma 6.7: If L ∈ P and L is NP -hard, then P = NP

Definition 6.12: (Cook) SAT is NP -complete

Lemma 6.8: If L1 ≤p L2 and L1 is NP -hard, then L2 is NP -hard

A few languages commonly used to show NP -completeness:

• SAT = {Φ | Φ is a satisfiable formula in CNF}

• 3SAT = {Φ | Φ is a satisfiable formula in CNF with all clauses containing at most three literals}

• CLIQUE = {(G, k) | G is an undirected graph that contains a k-clique }

• V C = {(G, k) | G is an undirected graph with a vertex cover of size ≤ k }

• SCP = {(X,S, k) | X has a set cover C ⊆ S such that |C| ≤ k }

• DS = {(G, k) | G has a dominating set D such that |D| ≤ k}

where a k-clique is a complete subgraph consisting of k vertices in G, with k ≤ |V |; where a subset C ⊆ S is a set
cover of X if X =

⋃
S∈C ; where a dominating set is is a set D ⊆ V such that for every vertex v ∈ V , v ∈ D or

exists w ∈ D such that {v, w} ∈ E and where a vertex cover is any set U ⊆ V where all edges {u, v} ∈ E have at
least one endpoint u, v ∈ U

We have SAT ≤p CLIQUE, SAT ≤p 3SAT , CLIQUE ≤p V C, V C ≤p SCP and SCP ≤p DS. Logically, we also
have SAT ≤p DS, etc, since ≤p is transitive (in fact, all reductions that we covered are transitive)

Additionally, MAX-SAT and MAX-CL, the problem to determine the maximum number of fulfillable clauses in a
formula Φ and the problem to determine the maximum clique, respectively, are NP -hard

December 31, 2025 13 / 14

Theoretical Computer Science - Compact Janis Hutz

7 Grammars

Definition 7.1: (Grammar) G := (ΣN,ΣT, P, S)

1. Non-Terminals ΣN (Are used for the rules)
2. Terminals ΣT (The symbols at the end (i.e. only they can be remaining after the last derivation))
3. Start symbol S ∈ ΣN

4. Derivation rules P ⊆ Σ∗ΣNΣ
∗ × Σ∗

where ΣN ∩ ΣT = ∅ and Σ := ΣN ∪ ΣT

Types of grammars Definition 7.2

1. G is a Type-0-Grammar if it has no further restrictions.
2. G is a Type-1-Grammar (or context-sensitive (= Kontextsensitiv) Grammar) if we cannot replace

a subword α with a shorter subword β.
3. G is a Type-2-Grammar (or context-free (= Kontextfrei) Grammar) if all rules have the form

X → β for a non-terminal X.
4. G is a Type-3-Grammar (or regular (= regulär) Grammar) if all rules have the form X → u or

X → uY

A few examples to highlight what kind of derivation rules are allowed. The rules disallowed in n are also disallowed
in n+ 1:

1. All kind of rules are allowed

2. Rules like X → λ or 0Y 1 → 00 are not allowed (they shorten the output)

3. Rules like aA → Sb are not allowed, as they are not context-free (i.e. all rules have to be of form X → . . .)

4. Rules like S → abbAB are not allowed, as two non-terminals appear

December 31, 2025 14 / 14

	Introduction
	Alphabets, Words, etc
	Alphabets, Words, Languages
	Kolmogorov-Complexity

	Finite Automata
	Representation
	Proofs of nonexistence
	Non-determinism

	Turing Machines
	Representation
	Multi-tape TM and Church's Thesis
	Non-Deterministic Turing Machines

	Computability
	Diagonalization
	Reductions
	Rice's Theorem
	The method of the Kolmogorov-Complexity

	Complexity
	Measurements of Complexity
	Complexity classes
	Non-deterministic measurements of complexity
	Proof verification
	NP-Completeness

	Grammars

