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1 Formale Sprachen

Grundlage, noétig fir die Formalisierung von Algorithmen.

Def: Alphabet & <% ¥ endlich und X # () Nummer(z) := 37 | @; - 2",
x € ¥ heisst Buchstabe, Zeichen, Symbol. Bin(m) := kiirzeste Binarkodierung von m in ¥poql.
def Bin(0) :=0
Def: Wort w iber ¥ < w = (x1,...,x,) endlich, z; € .
¥* = {w | wist Wort iiber X1} Def: Konkatenation Kon(z,y) =z -y = xy
A:=w s.d. |w| =0 (Leeres Wort) Yw: A w=w
Tt=3%\ {\} Kon ist assoziativ
. def .

Teilwort vvonw <= 3Jz,yeX*:w=avy Def: Reversal Fir a € ©*: aR := apan_1...a1

Prafix vvonw &L Jye ¥ tw=uvy 4 4

Suffix vvonw L& Tre v w=av Def: lteration Fiir x € ¥*: 2% := )\, 2! := 2, 2 := a2’ !
Note: Notation: z123 ...z, = (21, 2Z2,...,2y) Def: Vorkommen von a in w € ¥*: |w|, := |{i | w; = a}]

Def: Kanonische Ordnung von X*: Sei < eine Ordnung lber X. u,v € ¥*. z,v/,v" € ¥* und i < j.

u<v = /<] V |Ju=plAu=z s W Av=10-5; 0
Def: Sprache L iber 3 L Rabox Def: Konkatenation von L, Lo: L°:= Ly, L' := L. L

. ’ * L i + . T*
Def: Komplement LC := ¥* \ L Def: Kleene'scher Stern L* := z‘LEJoL , LT :=L"\{\}

Lemma: U ist distributiv iiber Sprachen:

L1LyUL1Ly = Ly(Ls U L3)
1.1 Algorithmische Probleme
TODO

1.2 Kolmogorov Komplexitat

Ziel: Komprimierung von Wértern, Schliessen auf Informationsdichte basierend auf Komprimierbarkeits-schwierigkeit.

Def: Kolmogorov Komplexitat Vz € X, : K(x) := kiirzestes Pascal-Programm fiir z.

Vermeidet die Festlegung auf einen spezifischen Komprimieralgorithmus. Buch beweist ebenfalls, dass Pascal hier keine Einschréankung ist.

ool *

Def: K(z) von Natirlichen Zahlen: K(n) := K(Bin(n)) Lemma: 3d Vzr e X}, : K(x) <|z|+d

Bin(|[) hat Lange [log, (|| +1)] Lemma: Vn > 13w, € X0 K(w,) > |wa| =n

Intuitiv: Es existieren unkomprimierbare w jeder Lange.

1.3 Anwendungen der Kolmogorov Komplexitat

Def: Zufillig <5 2 e ¥, erfiillt K (z) > |a|
n >0 ist zufallig <5 K(n) = K(Bin(n)) > [logy(n+1)] — 1

Diese Definition hat intuitiv nichts mit dem Zufallsbegriff aus der Wahrscheinlichkeit zu tun, hier geht es um den Informationsgehalt.

Theorem: (2.2) 3 Programmm Aj, welches (Xpool, L) l6st = Vn > 1: K(z,) < [loga(n+1)] +¢
L C X - #n = n-tes Wort bzgl. kan. Ordnung. (Zpeol, L) ist ein Entscheidungsproblem.

Vereinfacht haufig Beweise zur Kolmogorov Komplexitat stark.

Theorem:| lim ~om) — g

nooon/In(n)
Prim(x) := Anzahl Primzahlen kleiner x. Intuitiv: Anzahl Primzahlen wachst gleich schnell wie Anzahl Zahlen.




2 Endliche Automaten (EA)

Def: Endlicher Automat M := (Q, X, 6, qo, F) (g, w) Endkonfiguration LN (g, w) € Q x {\}
Zusténde @ (endlich) Def: Schritt := lﬁ C@xX*)x(QxX*)
Eingabealphabet 3. (Alphabet . def
Anfingszustand q (G Q ) wobei (¢,w) |57 (p,2) €5 w=azrNa€XAd(ga)=p
Akzeptierende Zustinde F? - Q Intuitiv: Ubergangsfunktion auf M im Zustand ¢ anwenden, bei a.
Ubergangsfunktion 1) :22 XY= Q Def: Berechnung C' :=CY,...,C, s.d. C; Konfiguration
d(¢,a) = p = im Zustand ¢ bei Eingabe a, gehe zu p. wobei Vi <n —1:C; lﬁ Cit gilt

Darstellungsformen: goto-Programm, gerichteter Graph

Def: Konfiguration von M: (¢, w) € Q x ©*

Intuitiv: M hat Zustand ¢ und liest noch den Suffix w

Def: Akzeptierte Sprache L(M) := {w € ¥* | §(¢o,w) € Def: Relationen bzgl. endlichen Automaten
F} * def .
Intuitiv: Menge aller Worter, die M akzeptiert (‘L w) |ﬁ (pa u) — 3 Bere(:hnung in M von (qa 'UJ) zu (p> u)

Die formelle Definition ist sehr lang. (S.54)
Klasse reguléarer Sprachen: Lg4 := {L(M) | M ist EA}

~

§(g,w)=p <5 (q,w) b (1, A)

Intuitiv: Wenn M in Zustand ¢ Wort w liest, endet M in p

Def: Kilasse Klp] := {w € ©* | §(qo, w) = p}

Klassen bilden eine Partition von ¥*. Ahnlich zu Aquivalenzklassen aus
DM.

Lemma: Vo € {U,N,—} 3M : L(M)= L(M;) ® L(My)
Lemma: L(M) = ngKl[p] Fiir alle EA M;, My iiber

Wegen diesem Lemma ist es moglich, EAs aus Teilautomaten zu bauen

2.1 Irregularitdt beweisen
Einige Ansatze um Aussagen der Art L ¢ Lga zu beweisen:

Lemma: (Direkt via Zustdnde) Sei A = (Q, %, 04,90, F), z £y € ¥*:

Ipe@: () l% (P, A) A (q0,y) l% (p,\) = VzeX* IreQ: zz€l(A) < yzec L(A)

54(qo,x) = da(qo,y) = pund z,y € Ki[p]

Intuitiv: Wenn man fiir zwei (auch unterschiedliche!) Eingaben die selbe Konfiguration erreicht, ist der weitere Verlauf identisch. Dieses Lemma

formalisiert die intuitiv klare "Ged&chtnislosigkeit" von EAs, d.h. dass ein EA keinen Speicher (ausser dem aktuellen Zustand) besitzt.
Lemma: (Pumping) fir L € Lga: 3ng € Nsd. Yw € & mit |w| > ng : 3x,y,2 : w = yxz und:
(i) lyz| <no  (id) [x] > 1

(i3i) {yx*z | k € N} € L oder {yz*z | k e N}NL =0

Intuitiv: Alle Woérter langer als ng lassen sich als w = yxzz zerlegen: wenn w (nicht) akzeptiert wird miissen alle anderen w; = yz¥z auch (nicht)

akzeptiert werden. Ein ng welches diese Zerlegung erlaubt existiert immer, wenn L regular ist.
_ (Kolmogorov) Sei L C (Xpoo)* reguldr. Sei L, = {y € (Zpoot)* | zy € L}, y,, das n-te Wort in L,

de Vz,y € (Zhool)” 1 K(yn) < [logo(n+1)] + ¢

Intuitiv: Suffixe von Woértern einer reguldren Sprache besitzen eine kleine Kolmogorov-Komplexitat. Man versucht meistens eine unendliche Menge

unterschiedlicher y; zu finden, was dann einen Widerspruch bildet zu diesem Satz.

2.2 Nicht-deterministische endliche Automaten (NEA)

Def: NEA M = (Q,%,4,qo, F) Def: Akzeptierte Sprache in NEAs
Ubergangsfunktion §:Q x ¥ — P(Q) L(Myga) == {w € £* | §(q,w) N F # 0}

Intuitiv: & gibt alle méglichen Zustande, statt nur Einen. . . . .
& & Intuitiv: Alle Woérter mit moglichen Berechnungsweg zu g € F'.

Def: Relationen bzgl. NEAs D.h. Akzeptierte Wérter miissen nicht immer akzeptiert werden.
5(g,\) =={q¢} YgeQ ‘Theorem: (3.2) Potenzmengen Konstruktion
3(q7wa) ={peQ|Ire S(Q,w) :p€d(r,a)} Lea = LNea

Intuitiv: & gibt alle moglichen Endzustande, statt nur Einen. o o . ) o
Intuitiv: Fiir jeden NEA gibt es einen dquivalenten EA.



3 Turing-Maschinen

Eine Formalisierung des Begriffs "Algorithmus".

Def: Turing Maschine M := (Q7 3,16, qo, Gaccept Qreject) Def: Konf(M) = {¢} IQ - rtu Q- {¢} I

Zustdnde Q (endlich) Beispiel: ¢w;gawz € Konf(M) heisst:

Eingabealphabet Y (Alphabet) M in Zustand q, hat Kopf bei |wi| + 1 auf a. Bandinhalt: ¢wiaws
Arbeitsalphabet Psd Xc,'nQ=10 - - e
Anfangszustand W% €Q Def: Aquivalenz TMs A, B sd. ¥4 = Xp:

Akzeptierende Zustinde F C Q l. z € L(A) < z € L(B)

Ubergangsfunktion F:QxX—=Q

2. A halt nicht auf x <= B halt nicht auf z

D.h. =(L(A) = L(B) = A, B aquivalent).

Theorem: (Church’sche These) Turing-Maschinen formalisieren tatsichlich das intuitive Konzept "Algorithmus".
Paraphrasiert, bedeutet dass das Modell der TMs (vermutlich) alle méglichen Algorithmen abbildet.

3.1 Mehrband Turing-Maschinen

Def: Mehrband TMs Lemma: VTM A:3MTM B s.d. A, B aquivalent.
1. Endliche Kontroll-logik Lemma: Vv MTM B:3 TM A s.d. A, B dquivalent.
2. Endliches Eingabeband Theorem: TMs und MTMs sind dquivalente Modelle.

i i . D.h. es existiert immer eine dquivalente Maschine im jeweils anderen Mod-
3. k nach rechts unendliche Arbeitsbander

ell.
Die Formelle Definition im Skript ist sehr lang.

Intuitiv bleiben alle Definitionen gleich, akzeptieren aber nun k& Bander.

3.2 Nicht-deterministische TMs
Definitionen analog zu TMs, w € L(NTM) falls irgendeine akzeptierende Berechnung existiert.
Theorem: vV NTM M : 3 TM A s.d.

1. L(M) = L(A)

2. A halt immer falls M keine unendlichen Berechnungen hat

D.h. auch NTMs sind konzeptuell dquivalent zu reguldren TMs.

3.3 Sprach-Klassen

Relevant fiir Kapitel 5.

Def: Rekursiv aufzdhlbar Lre := {L(M) | M ist TM }

Def: Rekursiv entscheidbar Lr := {L(M) | M ist TM, halt immer }

Lemma: LEERE/\LCGERE — LeLlr

Sehr niitzlich fiir Beweise der Form L ¢ Lgg.



4 Berechenbarkeit

Methoden zur Klassifizierung Algorithmischer Losbarkeit.

4.1 Diagonalisierung

DM Repetition.

Def: Machtigkeit Def: Abzihlbarkeit <= |A| = IN| V A endlich
Al <|B] <% 3f: A Binjektiv Lemma: VX : ©* ist abzahlbar

|A| _ |B| d:ef;) |A| < |B| A |B| < |A| Intuitiv: Da X endlich ist.

|A|l < |B] UN |A| < |B|A—|B| < |A| Weitere abzihlbare Mengen: Z, N*, Q, KodTM

Uberabzihlbare Mengen: R, [0, 1], P((Zbool)*)

ITheorem:| |Kod TM| < P((Spool)*)

Lemma: < ist Transitiv. D.h. existieren unendliche viele nicht rekursiv aufzéhlbare Sprachen.

Lemma: A C B = |A| < |B|

4.2 Reduktion
Ansatz fir Beweise von Aussagen der Form L € Lg oder L ¢ Lg.

Def: Rekursive Reduzierbarkeit

L1 <R Lo <g> Lye Lr = L1 € LR

D.h. Lo zu lésen, bedeuted auch L zu lésen.

Def: Eingabe-zu-Eingabe Reduzierbarkeit
Li <ge Ly €% 3M (TM): 3 S — S sd. 2 € Ly <= fu(z) € Lo
D.h. Es existiert eine TM M, die eine Abbildung fj; darstellt, mit welcher man L; via Lo direkt bestimmen kann.
Lemma: L, <gg Ly — L1 <g Lo Def: Halteproblem
Gilt nicht kehrt! .
o e pmeerenr Ly := {Kod(M)#z | z € 3}, A M halt auf z}

(Theorem:| Ly ¢ Lr

Lemma: VL C¥*: L <g L¢ A L¢ <g L D.h. man kann nie wissen, ob eine Turingmaschine anhalten wird.
Also L € Lp = L € Lr Def: Lempey = {Kod(M) | L(M) = 0}

[ThHeorem:| (Lemp)© € Lre aber (Lempy)© ¢ Lr
Def: Aquivalenzproblem

Leq = {Kod(M)#Kod(3) | L(M) = L(¥)}

Lemma: <gg ist Transitiv.

Lemma: Lr C Lre
Def: Universelle Sprache
Ly = {Kod(M)#w | w e X, ANw € L(M)}

[Theorem:| Ly € Lre aber Ly ¢ Lr
D.h. man kann nicht (in endlicher Zeit) priifen, ob M ein Wort w akzeptiert. _ LEQ ¢ Lr

D.h. man kann nicht 2 TMs auf Aquivalenz priifen, in endlicher Zeit.

TODO: reformat Def, Theorems as a table for languages

4.3 Rice
Ansatz fir Beweise von Aussagen der Form L ¢ Lg, fir L C KodTM.
Def: Semantisch nicht-triviales Entscheidungsproblem iiber TMs

L C KodTM: (3 TM M, : Kod(M;) € L) A (3 TM My : Kod(Ms) ¢ L)A (Y TM A, B: L(A) = L(B) = (A€ L < Be€ L))

L#D L#KodTM L behandelt semantisch gleiche TMs gleich

Def: Ly, » := {Kod(M) | M halt auf A} \Theorem:| Ly » ¢ Lr

[Theorem: Satz von Rice: Alle sem. nicht-triv. Probleme L sind unentscheidbar. (L ¢ Lg)
D.h. es reicht aus zu zeigen, dass L C KodTM die Bedingungen oben erfiillt, um L ¢ Lg zu zeigen.
4.4 Kolmogorov

_ Unlosbarkeit von Kolmogorov: Das Problem, Vz € (Xy001)* die Komplexitat K (x) zu berechnen, ist unlésbar.

Ein Alternativer Ansatz um Unldsbarkeit zu zeigen, unabhangig von Diagonalisierung.



5 Komplexitat

Eine Formalisierung der "Schwierigkeit" von Algorithmisch l6sbaren Problemen.

5.1 Zeit & Speicher
Def: Timem(z):=k—1

Def: Timem(n) := max{Timem(x) | z € "}

Intuitiv: Die Komplexitat im Schlechtesten Fall einer Eingabe der Lange n

Wobei: M immer halt, x € ¥* und D = C1C5 ...} Die Berechnung von M auf x
Def: Spacey(C) := max{|oy| | i =1,...,k}

Intuitiv: Die Linge des lingsten Arbeitsbandes in M, bei der Konfiguration C.
Def: Spacey(z) := max{Space,,(C;) | i=1,...,1}

Def: Spacey(n) := max{Space,;(z) | z € £"}

Wobei M eine k-Band MTM, C = (¢, x,i, 01,41 ..., ag, i) eine Konfiguration.
Lemma: V k-MTM A : 3 iquivalente 1-MTM B : Spaceg(n) < Space 4(n)

Lemma: V k-MTM A : 3 aquivalente &-MTM B : Spaceg(n) < SW%“(") +2

Intuitiv: Die Speicherkomplexitat von M lasst sich fiir jedes d € N um den Faktor d verkleinern. Das selbe gilt fir Timeps(n).

Theorem: 3(L,¥p00) YV MTM A sd. L(A) = L: 3MTM B s.d. L(B) = L und Timeg(n) < log,(Timea(n))
Intuitiv: Es gibt Probleme, wobei wir einen Lésungsalgorithmus unendlich oft signifikant verbessern kénnen. D.h. macht es keinen Sinn allgemein von

einem "Besten Algorithmus" fiir ein Problem zu reden.

5.2 O-Notation

Def: O(f(n)):={r:N—R"|3IngeN,JceNsd. Vn>ng: r(n)<c-f(n)}
Def: Q(f(n)):={r:N—=R" |3ngeN,IceNsd Vn>ng: r(n)>1.f(n)}
Def: O(f(n)) = O(f(n) N Af(n))

Def: o(f(n)):={r:N—>R* | lim 2 = 0}

Intuitiv: f wachst asymptotisch schneller als 7.

5.3 Komplexitatsklassen
f.g:N—=RT

Def: TIME(f) := {L(M) | M s.d. Timey(n) € O(f(n))}  Defi PSPACE := |J SPACE(n®)
) ceN

Def: SPACE(f) = {L(M) | M s. .
ef: SPACE(]) == {L(M) | M sd Spacey (n) € O (M)} 1pep expTIME = |J TIME(2™)
Def: P .= U TlME(’I’LC) deN
ceN
Lemma: vt : N — R* :  TIME(t(n)) C SPACE(t(n)) Lemma: DLOG C P C PSPACE C EXPTIME

TODO: Konstruierbarkeit

5.4 Nicht-deterministische Komplexitat
M := Nicht deterministische (M)TM. C' = C} ... C,, ist eine akzeptierende Berechnung auf z.

Def: Time;;(x) := Lange kiirzester akzept. Berechnung fiir .

Def: Timej;(n) := max({Timey (z) | x € L(M) A |z| = n} U {0})

Def: Space,,(C) := max{Space,;(C;) | i < m}

Def: Space,,;(z) := min{C | C akzeptiert x}

Def: Space,;(n) := max({x € L(M) A |x| =n} U{0})

Def: Kompelxitatsklassen: NTIME, NSPACE, NLOG, NP, NSPACE analog zur detereministischen Definition.

Theorem: NP = VP (Polynomielle Verifizierer)

D.h. ein polynomieller Verifizierer fiir L beweist direkt, dass L in NP ist.



5.5 NP-Volistandigkeit
Unter der Annahme: P C NP, kann man Beweise der Form L ¢ P machen.

Def: Polynomielle Reduzierbarkeit
L1 <, Ly &t 5 polynomielle M sd. Ve € (X1)*: ax€ Ly < M(z) € Ls

Intuitiv: EE-Reduktion, muss aber polynomielle Zeitkomplexitat haben.

Def: NP-Schwer Lsd. VL' e NP: L' <, L Def: NP-Volistandigkeit L s.d. L € NP und NP-Schwer
L NP-Schwer bedeutet nicht, dass L in NP ist.

Lemma: 3L : L € P ANP-Schwer = P = NP

Ein NP-Schweres Problem polynomiell zu 16sen beutet alle NP-Probleme polynomiell zu I6sen.

Lemma: L, <, Ly = (L1 NP-schwer = Ly NP-schwer)
D.h. Mit P-Reduktionen kann man beweisen, dass Lo NP-Schwer ist.

Def: SAT := {x € (Ziogic)* | = kodiert erfiillbare Formel in KNF}

[Theorem:| (Cook) SAT ist NP-vollstindig.

Der Beweis ist sehr lang. Im Endeffekt bedeutet dies, Boole'sche Formeln sind enorm ausdrucksstark.

Weitere NP-Schwere Probleme: SAT-Variationen (3SAT, E3SAT), Clique, Vertex-Cover, Dominating Sets

5.6 Klausel-Formeln

Nitzliche Gleichungen fiir Beweise mit KNF-Formeln



6 Grammatiken
Wurden in HS25 nur kurz angesprochen.
Def: Grammatik G := (Xn, X1, P, S)

Nicht-Terminale Xy

Terminale X1
sd. NN =0
Startsymbol S edn

Ableitungsregeln P C X*3\X* x ¥*
Wobei ¥ := Xy U Xt
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