1 Formale Sprachen
1.1 Algorithmische Probleme
1.2 Kolmogorov Komplexitat
1.3 Anwendungen der Kolmogorov Komplexitat

2 Endliche Automaten (EA)
2.1 Irregularitdt beweisen
2.2 Nicht-deterministische endliche Automaten (NEA) . .

3 Turing-Maschinen
3.1 Mehrband Turing-Maschinen
3.2 Nicht-deterministische TMs
3.3 Sprach-Klassen

Einleitung

Theoretische Informatik

Cheatsheet

Contents 4 Berechenbarkeit

4.1 Diagonalisierung

1 4.2 Reduktion
............... 1 43 Rice
--------------- 1 4.4 Kolmogorov
1
5 Komplexitat
2 5.1 Zeit & Speicher
................. 2 5.2 O-Notation.
2 5.3 Komplexitatsklassen
5.4 Nicht-deterministische Komplexitat
3 5.5 NP-Vollstandigkeit
3 5.6 Klausel-Formeln
3
..................... 3 6 Grammatiken

AR DA D

(o) NN NG, BNE, BNE, RGNS

Der Sinn dieses Dokuments ist, alle Resultate und Definitionen schnell auffindbar an einem Ort zu haben, z.B. fiir Hausaufgaben.
Dieses Dokument ist keine Zusammenfassung, enthilt aber einige Kommentare und Intuitive Erlauterungen (Text in grau).
Gute ausfiihrliche Zusammenfassungen existieren bereits: z.B. die von Nicolas Wehrli, auf Community Solutions.

Wie immer: Keine Garantie auf Komplettheit (primér Inhalt fiir HS25 Mid/Enterm) oder Korrektheit.

Robin Bacher

ETH Zirich, HS525

Basierend auf:

Theoretische Informatik, J. Hromkovic

Theolnf Summary, N. Wehrli

1 Formale Sprachen

Grundlage, noétig fir die Formalisierung von Algorithmen.

Def: Alphabet & <% ¥ endlich und X # () Nummer(z) := 37 | @; - 2",
x € ¥ heisst Buchstabe, Zeichen, Symbol. Bin(m) := kiirzeste Binarkodierung von m in ¥poql.
def Bin(0) :=0
Def: Wort w iber ¥ < w = (x1,...,x,) endlich, z; € .
¥* = {w | wist Wort iiber X1} Def: Konkatenation Kon(z,y) =z -y = xy
A:=w s.d. |w| =0 (Leeres Wort) Yw: A w=w
Tt=3%\ {\} Kon ist assoziativ
. def .

Teilwort vvonw <= 3Jz,yeX*:w=avy Def: Reversal Fir a € ©*: aR := apan_1...a1

Prafix vvonw &L Jye ¥ tw=uvy 4 4

Suffix vvonw L& Tre v w=av Def: lteration Fiir x € ¥*: 2% :=)\, 2! := 2, 2 := a2’ !
Note: Notation: z123 ...z, = (21, 2Z2,...,2y) Def: Vorkommen von a in w € ¥*: |w|, := |{i | w; = a}]

Def: Kanonische Ordnung von X*: Sei < eine Ordnung lber X. u,v € ¥*. z,v/,v" € ¥* und i < j.

u<v = /<] V |Ju=plAu=z s W Av=10-5; 0
Def: Sprache L iber 3 L Rabox Def: Konkatenation von L, Lo: L°:= Ly, L' := L. L

. ’ * L i + . T*
Def: Komplement LC := ¥* \ L Def: Kleene'scher Stern L* := z‘LEJoL , LT :=L"\{\}

Lemma: U ist distributiv iiber Sprachen:

L1LyUL1Ly = Ly(Ls U L3)
1.1 Algorithmische Probleme
TODO

1.2 Kolmogorov Komplexitat

Ziel: Komprimierung von Wértern, Schliessen auf Informationsdichte basierend auf Komprimierbarkeits-schwierigkeit.

Def: Kolmogorov Komplexitat Vz € X, : K(x) := kiirzestes Pascal-Programm fiir z.

Vermeidet die Festlegung auf einen spezifischen Komprimieralgorithmus. Buch beweist ebenfalls, dass Pascal hier keine Einschréankung ist.

ool *

Def: K(z) von Natirlichen Zahlen: K(n) := K(Bin(n)) Lemma: 3d Vzr e X}, : K(x) <|z|+d

Bin(|[) hat Lange [log, (|| +1)] Lemma: Vn > 13w, € X0 K(w,) > |wa| =n

Intuitiv: Es existieren unkomprimierbare w jeder Lange.

1.3 Anwendungen der Kolmogorov Komplexitat

Def: Zufillig <5 2 e ¥, erfiillt K (z) > |a|
n >0 ist zufallig <5 K(n) = K(Bin(n)) > [logy(n+1)] — 1

Diese Definition hat intuitiv nichts mit dem Zufallsbegriff aus der Wahrscheinlichkeit zu tun, hier geht es um den Informationsgehalt.

Theorem: (2.2) 3 Programmm Aj, welches (Xpool, L) l6st = Vn > 1: K(z,) < [loga(n+1)] +¢
L C X - #n = n-tes Wort bzgl. kan. Ordnung. (Zpeol, L) ist ein Entscheidungsproblem.

Vereinfacht haufig Beweise zur Kolmogorov Komplexitat stark.

Theorem:| lim ~om) — g

nooon/In(n)
Prim(x) := Anzahl Primzahlen kleiner x. Intuitiv: Anzahl Primzahlen wachst gleich schnell wie Anzahl Zahlen.

2 Endliche Automaten (EA)

Def: Endlicher Automat M := (Q, X, 6, qo, F) (g, w) Endkonfiguration LN (g, w) € Q x {\}
Zusténde @ (endlich) Def: Schritt := lﬁ C@xX*)x(QxX*)
Eingabealphabet 3. (Alphabet . def
Anfingszustand q (G Q) wobei (¢,w) |57 (p,2) €5 w=azrNa€XAd(ga)=p
Akzeptierende Zustinde F? - Q Intuitiv: Ubergangsfunktion auf M im Zustand ¢ anwenden, bei a.
Ubergangsfunktion 1) :22 XY= Q Def: Berechnung C' :=CY,...,C, s.d. C; Konfiguration
d(¢,a) = p = im Zustand ¢ bei Eingabe a, gehe zu p. wobei Vi <n —1:C; lﬁ Cit gilt

Darstellungsformen: goto-Programm, gerichteter Graph

Def: Konfiguration von M: (¢, w) € Q x ©*

Intuitiv: M hat Zustand ¢ und liest noch den Suffix w

Def: Akzeptierte Sprache L(M) := {w € ¥* | §(¢o,w) € Def: Relationen bzgl. endlichen Automaten
F} * def .
Intuitiv: Menge aller Worter, die M akzeptiert (‘L w) |ﬁ (pa u) — 3 Bere(:hnung in M von (qa 'UJ) zu (p> u)

Die formelle Definition ist sehr lang. (S.54)
Klasse reguléarer Sprachen: Lg4 := {L(M) | M ist EA}

~

§(g,w)=p <5 (q,w) b (1, A)

Intuitiv: Wenn M in Zustand ¢ Wort w liest, endet M in p

Def: Kilasse Klp] := {w € ©* | §(qo, w) = p}

Klassen bilden eine Partition von ¥*. Ahnlich zu Aquivalenzklassen aus
DM.

Lemma: Vo € {U,N,—} 3M : L(M)= L(M;) ® L(My)
Lemma: L(M) = ngKl[p] Fiir alle EA M;, My iiber

Wegen diesem Lemma ist es moglich, EAs aus Teilautomaten zu bauen

2.1 Irregularitdt beweisen
Einige Ansatze um Aussagen der Art L ¢ Lga zu beweisen:

Lemma: (Direkt via Zustdnde) Sei A = (Q, %, 04,90, F), z £y € ¥*:

Ipe@: () l% (P, A) A (q0,y) l% (p,\) = VzeX* IreQ: zz€l(A) < yzec L(A)

54(qo,x) = da(qo,y) = pund z,y € Ki[p]

Intuitiv: Wenn man fiir zwei (auch unterschiedliche!) Eingaben die selbe Konfiguration erreicht, ist der weitere Verlauf identisch. Dieses Lemma

formalisiert die intuitiv klare "Ged&chtnislosigkeit" von EAs, d.h. dass ein EA keinen Speicher (ausser dem aktuellen Zustand) besitzt.
Lemma: (Pumping) fir L € Lga: 3ng € Nsd. Yw € & mit |w| > ng : 3x,y,2 : w = yxz und:
(i) lyz| <no (id) [x] > 1

(i3i) {yx*z | k € N} € L oder {yz*z | k e N}NL =0

Intuitiv: Alle Woérter langer als ng lassen sich als w = yxzz zerlegen: wenn w (nicht) akzeptiert wird miissen alle anderen w; = yz¥z auch (nicht)

akzeptiert werden. Ein ng welches diese Zerlegung erlaubt existiert immer, wenn L regular ist.
_ (Kolmogorov) Sei L C (Xpoo)* reguldr. Sei L, = {y € (Zpoot)* | zy € L}, y,, das n-te Wort in L,

de Vz,y € (Zhool)” 1 K(yn) < [logo(n+1)] + ¢

Intuitiv: Suffixe von Woértern einer reguldren Sprache besitzen eine kleine Kolmogorov-Komplexitat. Man versucht meistens eine unendliche Menge

unterschiedlicher y; zu finden, was dann einen Widerspruch bildet zu diesem Satz.

2.2 Nicht-deterministische endliche Automaten (NEA)

Def: NEA M = (Q,%,4,qo, F) Def: Akzeptierte Sprache in NEAs
Ubergangsfunktion §:Q x ¥ — P(Q) L(Myga) == {w € £* | §(q,w) N F # 0}

Intuitiv: & gibt alle méglichen Zustande, statt nur Einen.
& & Intuitiv: Alle Woérter mit moglichen Berechnungsweg zu g € F'.

Def: Relationen bzgl. NEAs D.h. Akzeptierte Wérter miissen nicht immer akzeptiert werden.
5(g,\) =={q¢} YgeQ ‘Theorem: (3.2) Potenzmengen Konstruktion
3(q7wa) ={peQ|Ire S(Q,w) :p€d(r,a)} Lea = LNea

Intuitiv: & gibt alle moglichen Endzustande, statt nur Einen. o o .) o
Intuitiv: Fiir jeden NEA gibt es einen dquivalenten EA.

3 Turing-Maschinen

Eine Formalisierung des Begriffs "Algorithmus".

Def: Turing Maschine M := (Q7 3,16, qo, Gaccept Qreject) Def: Konf(M) = {¢} IQ - rtu Q- {¢} I

Zustdnde Q (endlich) Beispiel: ¢w;gawz € Konf(M) heisst:

Eingabealphabet Y (Alphabet) M in Zustand q, hat Kopf bei |wi| + 1 auf a. Bandinhalt: ¢wiaws
Arbeitsalphabet Psd Xc,'nQ=10 - - e
Anfangszustand W% €Q Def: Aquivalenz TMs A, B sd. ¥4 = Xp:

Akzeptierende Zustinde F C Q l. z € L(A) < z € L(B)

Ubergangsfunktion F:QxX—=Q

2. A halt nicht auf x <= B halt nicht auf z

D.h. =(L(A) = L(B) = A, B aquivalent).

Theorem: (Church’sche These) Turing-Maschinen formalisieren tatsichlich das intuitive Konzept "Algorithmus".
Paraphrasiert, bedeutet dass das Modell der TMs (vermutlich) alle méglichen Algorithmen abbildet.

3.1 Mehrband Turing-Maschinen

Def: Mehrband TMs Lemma: VTM A:3MTM B s.d. A, B aquivalent.
1. Endliche Kontroll-logik Lemma: Vv MTM B:3 TM A s.d. A, B dquivalent.
2. Endliches Eingabeband Theorem: TMs und MTMs sind dquivalente Modelle.

i i . D.h. es existiert immer eine dquivalente Maschine im jeweils anderen Mod-
3. k nach rechts unendliche Arbeitsbander

ell.
Die Formelle Definition im Skript ist sehr lang.

Intuitiv bleiben alle Definitionen gleich, akzeptieren aber nun k& Bander.

3.2 Nicht-deterministische TMs
Definitionen analog zu TMs, w € L(NTM) falls irgendeine akzeptierende Berechnung existiert.
Theorem: vV NTM M : 3 TM A s.d.

1. L(M) = L(A)

2. A halt immer falls M keine unendlichen Berechnungen hat

D.h. auch NTMs sind konzeptuell dquivalent zu reguldren TMs.

3.3 Sprach-Klassen

Relevant fiir Kapitel 5.

Def: Rekursiv aufzdhlbar Lre := {L(M) | M ist TM }

Def: Rekursiv entscheidbar Lr := {L(M) | M ist TM, halt immer }

Lemma: LEERE/\LCGERE — LeLlr

Sehr niitzlich fiir Beweise der Form L ¢ Lgg.

4 Berechenbarkeit

Methoden zur Klassifizierung Algorithmischer Losbarkeit.

4.1 Diagonalisierung

DM Repetition.

Def: Machtigkeit Def: Abzihlbarkeit <= |A| = IN| V A endlich
Al <|B] <% 3f: A Binjektiv Lemma: VX : ©* ist abzahlbar

|A| _ |B| d:ef;) |A| < |B| A |B| < |A| Intuitiv: Da X endlich ist.

|A|l < |B] UN |A| < |B|A—|B| < |A| Weitere abzihlbare Mengen: Z, N*, Q, KodTM

Uberabzihlbare Mengen: R, [0, 1], P((Zbool)*)

ITheorem:| |Kod TM| < P((Spool)*)

Lemma: < ist Transitiv. D.h. existieren unendliche viele nicht rekursiv aufzéhlbare Sprachen.

Lemma: A C B = |A| < |B|

4.2 Reduktion
Ansatz fir Beweise von Aussagen der Form L € Lg oder L ¢ Lg.

Def: Rekursive Reduzierbarkeit

L1 <R Lo <g> Lye Lr = L1 € LR

D.h. Lo zu lésen, bedeuted auch L zu lésen.

Def: Eingabe-zu-Eingabe Reduzierbarkeit
Li <ge Ly €% 3M (TM): 3 S — S sd. 2 € Ly <= fu(z) € Lo
D.h. Es existiert eine TM M, die eine Abbildung fj; darstellt, mit welcher man L; via Lo direkt bestimmen kann.
Lemma: L, <gg Ly — L1 <g Lo Def: Halteproblem
Gilt nicht kehrt! .
o e pmeerenr Ly := {Kod(M)#z | z € 3}, A M halt auf z}

(Theorem:| Ly ¢ Lr

Lemma: VL C¥*: L <g L¢ A L¢ <g L D.h. man kann nie wissen, ob eine Turingmaschine anhalten wird.
Also L € Lp = L € Lr Def: Lempey = {Kod(M) | L(M) = 0}

[ThHeorem:| (Lemp)© € Lre aber (Lempy)© ¢ Lr
Def: Aquivalenzproblem

Leq = {Kod(M)#Kod(3) | L(M) = L(¥)}

Lemma: <gg ist Transitiv.

Lemma: Lr C Lre
Def: Universelle Sprache
Ly = {Kod(M)#w | w e X, ANw € L(M)}

[Theorem:| Ly € Lre aber Ly ¢ Lr
D.h. man kann nicht (in endlicher Zeit) priifen, ob M ein Wort w akzeptiert. _ LEQ ¢ Lr

D.h. man kann nicht 2 TMs auf Aquivalenz priifen, in endlicher Zeit.

TODO: reformat Def, Theorems as a table for languages

4.3 Rice
Ansatz fir Beweise von Aussagen der Form L ¢ Lg, fir L C KodTM.
Def: Semantisch nicht-triviales Entscheidungsproblem iiber TMs

L C KodTM: (3 TM M, : Kod(M;) € L) A (3 TM My : Kod(Ms) ¢ L)A (Y TM A, B: L(A) = L(B) = (A€ L < Be€ L))

L#D L#KodTM L behandelt semantisch gleiche TMs gleich

Def: Ly, » := {Kod(M) | M halt auf A} \Theorem:| Ly » ¢ Lr

[Theorem: Satz von Rice: Alle sem. nicht-triv. Probleme L sind unentscheidbar. (L ¢ Lg)
D.h. es reicht aus zu zeigen, dass L C KodTM die Bedingungen oben erfiillt, um L ¢ Lg zu zeigen.
4.4 Kolmogorov

_ Unlosbarkeit von Kolmogorov: Das Problem, Vz € (Xy001)* die Komplexitat K (x) zu berechnen, ist unlésbar.

Ein Alternativer Ansatz um Unldsbarkeit zu zeigen, unabhangig von Diagonalisierung.

5 Komplexitat

Eine Formalisierung der "Schwierigkeit" von Algorithmisch l6sbaren Problemen.

5.1 Zeit & Speicher
Def: Timem(z):=k—1

Def: Timem(n) := max{Timem(x) | z € "}

Intuitiv: Die Komplexitat im Schlechtesten Fall einer Eingabe der Lange n

Wobei: M immer halt, x € ¥* und D = C1C5 ...} Die Berechnung von M auf x
Def: Spacey(C) := max{|oy| | i =1,...,k}

Intuitiv: Die Linge des lingsten Arbeitsbandes in M, bei der Konfiguration C.
Def: Spacey(z) := max{Space,,(C;) | i=1,...,1}

Def: Spacey(n) := max{Space,;(z) | z € £"}

Wobei M eine k-Band MTM, C = (¢, x,i, 01,41 ..., ag, i) eine Konfiguration.
Lemma: V k-MTM A : 3 iquivalente 1-MTM B : Spaceg(n) < Space 4(n)

Lemma: V k-MTM A : 3 aquivalente &-MTM B : Spaceg(n) < SW%“(") +2

Intuitiv: Die Speicherkomplexitat von M lasst sich fiir jedes d € N um den Faktor d verkleinern. Das selbe gilt fir Timeps(n).

Theorem: 3(L,¥p00) YV MTM A sd. L(A) = L: 3MTM B s.d. L(B) = L und Timeg(n) < log,(Timea(n))
Intuitiv: Es gibt Probleme, wobei wir einen Lésungsalgorithmus unendlich oft signifikant verbessern kénnen. D.h. macht es keinen Sinn allgemein von

einem "Besten Algorithmus" fiir ein Problem zu reden.

5.2 O-Notation

Def: O(f(n)):={r:N—R"|3IngeN,JceNsd. Vn>ng: r(n)<c-f(n)}
Def: Q(f(n)):={r:N—=R" |3ngeN,IceNsd Vn>ng: r(n)>1.f(n)}
Def: O(f(n)) = O(f(n) N Af(n))

Def: o(f(n)):={r:N—>R* | lim 2 = 0}

Intuitiv: f wachst asymptotisch schneller als 7.

5.3 Komplexitatsklassen
f.g:N—=RT

Def: TIME(f) := {L(M) | M s.d. Timey(n) € O(f(n))} Defi PSPACE := |J SPACE(n®)
) ceN

Def: SPACE(f) = {L(M) | M s. .
ef: SPACE(]) == {L(M) | M sd Spacey (n) € O (M)} 1pep expTIME = |J TIME(2™)
Def: P .= U TlME(’I’LC) deN
ceN
Lemma: vt : N — R* : TIME(t(n)) C SPACE(t(n)) Lemma: DLOG C P C PSPACE C EXPTIME

TODO: Konstruierbarkeit

5.4 Nicht-deterministische Komplexitat
M := Nicht deterministische (M)TM. C' = C} ... C,, ist eine akzeptierende Berechnung auf z.

Def: Time;;(x) := Lange kiirzester akzept. Berechnung fiir .

Def: Timej;(n) := max({Timey (z) | x € L(M) A |z| = n} U {0})

Def: Space,,(C) := max{Space,;(C;) | i < m}

Def: Space,,;(z) := min{C | C akzeptiert x}

Def: Space,;(n) := max({x € L(M) A |x| =n} U{0})

Def: Kompelxitatsklassen: NTIME, NSPACE, NLOG, NP, NSPACE analog zur detereministischen Definition.

Theorem: NP = VP (Polynomielle Verifizierer)

D.h. ein polynomieller Verifizierer fiir L beweist direkt, dass L in NP ist.

5.5 NP-Volistandigkeit
Unter der Annahme: P C NP, kann man Beweise der Form L ¢ P machen.

Def: Polynomielle Reduzierbarkeit
L1 <, Ly &t 5 polynomielle M sd. Ve € (X1)*: ax€ Ly < M(z) € Ls

Intuitiv: EE-Reduktion, muss aber polynomielle Zeitkomplexitat haben.

Def: NP-Schwer Lsd. VL' e NP: L' <, L Def: NP-Volistandigkeit L s.d. L € NP und NP-Schwer
L NP-Schwer bedeutet nicht, dass L in NP ist.

Lemma: 3L : L € P ANP-Schwer = P = NP

Ein NP-Schweres Problem polynomiell zu 16sen beutet alle NP-Probleme polynomiell zu I6sen.

Lemma: L, <, Ly = (L1 NP-schwer = Ly NP-schwer)
D.h. Mit P-Reduktionen kann man beweisen, dass Lo NP-Schwer ist.

Def: SAT := {x € (Ziogic)* | = kodiert erfiillbare Formel in KNF}

[Theorem:| (Cook) SAT ist NP-vollstindig.

Der Beweis ist sehr lang. Im Endeffekt bedeutet dies, Boole'sche Formeln sind enorm ausdrucksstark.

Weitere NP-Schwere Probleme: SAT-Variationen (3SAT, E3SAT), Clique, Vertex-Cover, Dominating Sets

5.6 Klausel-Formeln

Nitzliche Gleichungen fiir Beweise mit KNF-Formeln

6 Grammatiken
Wurden in HS25 nur kurz angesprochen.
Def: Grammatik G := (Xn, X1, P, S)

Nicht-Terminale Xy

Terminale X1
sd. NN =0
Startsymbol S edn

Ableitungsregeln P C X*3\X* x ¥*
Wobei ¥ := Xy U Xt

	Formale Sprachen
	Algorithmische Probleme
	Kolmogorov Komplexität
	Anwendungen der Kolmogorov Komplexität

	Endliche Automaten (EA)
	Irregularität beweisen
	Nicht-deterministische endliche Automaten (NEA)

	Turing-Maschinen
	Mehrband Turing-Maschinen
	Nicht-deterministische TMs
	Sprach-Klassen

	Berechenbarkeit
	Diagonalisierung
	Reduktion
	Rice
	Kolmogorov

	Komplexität
	Zeit & Speicher
	O-Notation
	Komplexitätsklassen
	Nicht-deterministische Komplexität
	NP-Vollständigkeit
	Klausel-Formeln

	Grammatiken

