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1 Introduction

This Cheat-Sheet does not serve as a replacement for solving exercises and getting familiar with the content. There is no guarantee
that the content is 100% accurate, so use at your own risk. If you discover any errors, please open an issue or fix the issue yourself
and then open a Pull Request here:

https://github.com/janishutz/eth-summaries

This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind. Thus, the whole Cheat-Sheet can be printed
full-sized, if you exclude the title page, contents and this page. You could also print it as two A5 pages per A4 page and also print

the Analysis I summary in the same manner, allowing you to bring both to the exam.

And yes, she did really miss an opportunity there with the quote. . . But she was also sick, so it’s not as unexpected

This summary also uses tips and tricks from this Exercise Session
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2 Differential Equations

2.1 Introduction

Ex 2.1.1: f ′(x) = f(x) has only solution f(x) = aex for any a ∈ R; f ′ − a = 0 has only solution f(x) =
∫ x

x0
a(t) dt

T 2.1.2: Let F : R2 → R be a differential function of two variables. Let x0 ∈ R and y0 ∈ R2. The Ordinary Differential Equation
(ODE) y′ = F (x, y) has a unique solution f defined on a “largest” interval I that contains x0 such that y0 = f(x0)

2.2 Linear Differential Equations

An ODE is considered linear if and only if the ys are only scaled and not part of powers.

D 2.2.1: (Linear differential equation of order k) (order = highest derivative) y(k) + ak−1y
(k−1) + . . . + a1y

′ + a0y = b, with ai
and b functions in x. If b(x) = 0 ∀x, homogeneous, else inhomogeneous

T 2.2.2: For open I ⊆ R and k ≥ 1, for lin. ODE over I with continuous ai we have:
1. Set S of k× diff. sol. f : I → C(R) of the eq. is a complex (real) subspace of complex (real)-valued func. over I
2. dim(S) = k ∀x0 ∈ I and any (y0, . . . , yk−1) ∈ Ck, exists unique f ∈ S s.t. f(x0) = y0, f

′(x0) = y1, . . . , f
(k−1)(x0) = yk−1. If

ai real-valued, same applies, but C replaced by R.
3. Let b continuous on I. Exists solution f0 to inhom. lin. ODE and Sb is set of funct. f + f0 where f ∈ S

The solution space S is spanned by k functions, which thus form a basis of S. If inhomogeneous, S not vector space.

Finding solutions (in general)

(1) Find basis {f1, . . . , fk} for S0 for homogeneous equation (set b(x) = 0) (i.e. find homogeneous part, solve it)
(2) If inhomogeneous, find fp that solves the equation. The set of solutions is then Sb = {fh + fp | fh ∈ S0}.
(3) If there are initial conditions, find equations ∈ Sb which fulfill conditions using SLE (as always)

2.3 Linear differential equations of first order
P 2.3.1: Solution of y′ + ay = 0 is of form f(x) = ze−A(x) with A anti-derivative of a

Imhomogeneous equation

1. Plug all values into yp =
∫
b(x)eA(x) (A(x) in the exponent instead of −A(x) as in the homogeneous solution)

2. Solve and the final y(x) = yh + yp. For initial value problem, determine coefficient z

2.4 Linear differential equations with constant coefficients

The coefficients ai are constant functions of form ai(x) = k with k constant, where b(x) can be any function.

Homogeneous Equation

1. Find characteristic polynomial (of form λk + ak−1λ
k−1 + . . .+ a1λ+ a0 for order k lin. ODE with coefficients ai ∈ R).

2. Find the roots of polynomial. The solution space is given by {zj · xvj−1eγix | vj ∈ N, γi ∈ R} where vj is the multiplicity of
the root γi. For γi = α+βi ∈ C, we have z1 · eαx cos(βx), z2 · eαx sin(βx), representing the two complex conjugated solutions.

Inhomogeneous Equation

1. (Case 1) b(x) = cxdeαx, with special cases xd and eαx: fp = Q(x)eαx with Q a polynomial with deg(Q) ≤ j + d, where j is
multiplicity of root α (if P (α) ̸= 0, then j = 0) of characteristic polynomial

2. (Case 2) b(x) = cxd cos(αx), or b(x) = cxd sin(αx): fp = Q1(x) · cos(αx) +Q2(x9 · sin(αx)), where Qi(x) a polynomial with
deg(Qi) ≤ d+ j, where j is the multiplicity of root αi (if P (αi) ̸= 0, then j = 0) of characteristic polynomial

Other methods
• Change of variable Apply substitution method here, substituting for example for y′ = f(ax+ by+ c) u = ax+ by to make
the integral simpler. Mostly intuition-based (as is the case with integration by substitution)

• Separation of variables For equations of form y′ = a(y) · b(x) (NOTE: Not linear), we transform into y′

a(y) = b(x) and then

integrate by substituting y′(x)dx = dy, changing the variable of integration. Solution: A(y) = B(x) + c, with A =
∫

1
a and

B(x) =
∫
b(x). To get final solution, solve for the above equation for y.
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3 Differential Calculus in Vector Space

3.2 Continuity

D 3.2.1: (Convergence in Rn) Let (xk)k∈N where xk ∈ Rn with xk = (xk,1, . . . , xk,n) and let y = (y1, . . . , yn) ∈ Rn. (xk) converges
to y as k → +∞ if ∀ε > 0 ∃N ≥ 1 s.t. ∀n ≥ N we have ||xk − y|| < ε

L 3.2.2: (xk) converges to y as k → +∞ iff one of following equiv. statements holds: (1) ∀1 ≤ i ≤ n, the sequence (xk,i) with
xk,i ∈ R converges to yi (2) (||xk − y||) converges to 0 as k → +∞
D 3.2.3: (Continuity) Let X ⊆ Rn and f : X → Rm. (1) Let x0 ∈ X. f continuous in Rn if ∀ε > 0 ∃δ > 0 s.t. if x ∈ X satisfies

||x− x0|| < δ, then ||f(x)− f(x0)|| < ε (2) f continuous on X if continuous at x0 ∀x0 ∈ X P 3.2.4: Let X and f as prev. Let
x0 ∈ X. f continuous at x0 iff ∀(xk)k≥1 in X s.t. xk → x0 as k → +∞, (f(xk))k≥1 in Rm converges to f(x)

D 3.2.5: (Limit) Let X, f and x0 as prev. and y ∈ Rm. f has limit y as x → x0 with x ̸= x0 if ∀ε > 0 ∃δ > 0 s.t.

∀x ̸= x0 ∈ X, ||x− x0|| < δ we have ||f(x)− y|| < ε. We write lim x→x0
x̸=x0

f(x) = y R 3.2.6: Also possible without ass. that x0 ∈ X

P 3.2.7: Let X, f , x0 and y as prev. We have lim x→x0
x̸=x0

f(x) = y iff ∀(xk) in X s.t. xk → x as k → +∞ and xk ̸= x0 (f(xk)) in

Rm converges to y P 3.2.9: Let X ⊆ Rn, y ⊆ Rm, p ∈ N and let f : X → Y and g : Y → Rp be cont. Then g ◦ f is continuous

Remark: To find the limits, we have two tricks (for lim
(x,y)→(a,b)

):

1. (Substitution) Substitute y = x+ (b− a), then limit is lim
x→(a−b)

2. (Polar coordinates) Substitute x = r cos(φ) and y = r sin(φ) and the limit is lim
r→0

Ex 3.2.10: (1) f1 : Rn → Rm1 and f2 : Rn → Rm2 continuous ⇒ f = (f1, f2) : Rn → Rm1+m2 is continuous (Cartesian product)
(2) Any linear map f : Rn → Rm is continuous. In particular, the identity map is continuous (3) If f1, . . . , fn continuous, then
f(x1, . . . , xn) = f1(x1) · . . . · fn(xn) is continuous (4) Polynomials in x1, . . . , xn are continuous (5) f1f2 is continuous if f1 and f2
are continuous and if f2(x) ̸= 0 ∀x ∈ X, then f1 ÷ f2 is continuous. (see Theorem 2.1.8 in Analysis I)
(6) If both f and g have limits, then lim

x→x0

(f(x)+ g(x)) = lim
x→x0

f(x)+ lim
x→x0

g(x) and analogous for × (7) If f : R2 → R continuous,

then g(x) = f(x, y0) for y0 ∈ R is continuous. The converse is not true

D 3.2.11: (1) X ⊆ Rn is bounded if the set of ||x|| for x ∈ X is bounded in R (2) X ⊆ Rn is closed if ∀(xk) in X that converge
in Rn to some vector y ∈ Rn, we have y ∈ X (3) X ⊆ Rn is compact if it is bounded and closed

Ex 3.2.12: (1) ∅ and Rn are closed. (2) The open disc D = {x ∈ Rn : ||x− x0|| < r} for r > 0 and x0 ∈ Rn is bounded and not
closed. (3) The closed disc ∆ = {x ∈ Rn : ||x− x0|| ≤ r} is bounded and closed. In particular, a closed interval is a closed set. An
interval is compact if it is bounded (4) If X1 ⊆ Rn and X2 ⊆ Rm are bounded (also closed or compact), then so is X1×X2 ⊆ Rn+m

P 3.2.13: Let f : Rn → Rm be a continuous map. For any closed Y ⊆ Rm, the set f−1(Y ) = {x ∈ Rn : f(x) ∈ Y } ⊆ Rn is closed

Ex 3.2.14: The zero set Z = {x ∈ Rn : f(x) = 0} is closed in Rn because {0} ⊆ R is closed. More generally: for any r ≥ 0,
{x ∈ Rn : |f(x)| ≤ r} is f−1([−r, r]) and is closed, since [−r, r] is closed. Furthermore: {x ∈ R3 : ||x− x0|| = r} is closed

T 3.2.15: Let (X ̸= ∅) ⊆ Rn compact and f : X → R continuous. Then f bounded, has max and min, i.e. ∃x+, x− ∈ X s.t.
f(x+) = sup

x∈X
f(x) and f(x−) = inf

x∈X
f(x)

3.3 Partial derivatives

D 3.3.1: X ⊆ Rn open if for any x = (x1, . . . , xn) ∈ X ∃δ > 0 s.t. {y = (y1, . . . , yn) ∈ Rn : |xi − yi| < δ ∀i} is contained in

X. (= changing a coordinate of x by < δ → x′ ∈ X) P 3.3.2: X ⊆ Rn open ⇔ complement Y = {x ∈ Rn : x /∈ X} is closed

C 3.3.3: If f : Rn → Rm cont. and Y ⊆ Rm open, then f−1(Y ) is open in Rn Ex 3.3.4: (1) ∅ and Rn are both open and closed.
(2) Open ball D = {x ∈ Rn : ||x− x0|| < r} is open in Rn (x0 the center and r radius) (3) I1 × · · · × In is open in Rn for Ii open
(4) X ⊆ Rn open ⇔ ∀x ∈ X∃δ > 0 s.t. open ball of center x and radius δ is contained in X

D 3.3.5: (Partial derivative) Let X ⊆ Rn open, f : X → Rm and 1 ≤ i ≤ n. Then f has partial derivative on X
with respect to the i-th variable (or coordinate), if ∀x0 = (x0,1, . . . , x0,n) ∈ X, g(t) = f(x0,1, . . . , x0,i−1, t, x0,i+1, x0,n) on set
I = {t ∈ R : (x0,1, . . . , x0,i−1, t, x0,i+1, . . . , x0,n) ∈ X} is differentiable at t = x0,i. The derivative g′(x0,i) at x0,i is denoted:
∂f
∂xi

(x0), ∂xi
f(x0) or ∂if(x0)

P 3.3.7: Let X ⊆ Rn open, f, g : X → Rm and 1 ≤ i ≤ n. Then: (1) If f & g have ∂i on X, then so does f + g and
∂xi

(f + g) = ∂xi
(f) + ∂xi

(g) (2) If m = 1 (i.e. R1) and f & g have ∂i on X, then so does fg and ∂xi
(fg) = ∂xi

(f)g + f∂xi
(g) and

if g(x) ̸= 0 ∀x ∈ X, then if f ÷ g has ∂i on X, then so does f ÷ g and ∂xi
(f ÷ g) = (∂xi

(f)g − f∂xi
(g))÷ g2

D 3.3.8: (Jacobi Matrix J) Element Jij = ∂xj
fi(x) for function f : X → Rm with X ⊆ Rn open. xj is the j-th variable, fi is

the i-th component of the equation (i.e. in the vector of the function). J has m rows and n columns.

D 3.3.10: (Gradient, Divergence) for f : X → R with X ∈ Rn open, the gradient is given by ∇f(x0) =

∂x1f(x0)
...

∂xn
f(x0)

 and the

trace of the Jacobi Matrix, div(f)(x0) = Tr(Jf (x0)) =
∑n

i=1 ∂xi
fi(x0) is called the divergence of f at x0.
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3.4 The differential

D 3.4.2: (Differentiable function) We have function f : X → Rm, linear map u : Rn → Rm and x0 ∈ X. f is differentiable at

x0 with differential u if lim
x→x0
x̸=x0

1

||x− x0||
(f(x) − f(x0) − u(x − x0) = 0 where the limit is in Rm. We denote df(x0) = u. If f is

differentiable at every x0 ∈ X, then f is differentiable on X. P 3.4.4: Let f : X → Rm be differentiable on X
• f is continuous on X
• f admits partial derivatives on X with respect to each variable
• Assume m = 1, let x0 ∈ X and let u(x1, . . . , xn) = a1x1 + . . .+ anxn be diff. of f at x0. Then ∂xif(x0) = ai for 1 ≤ i ≤ n

P 3.4.6: Let f, g : X → Rm with X ⊆ Rn open
• The function f + g is differentiable with differential d(f + g) = df + dg. If m = 1, then fg is differentiable
• If m = 1 and if g(x) ̸= 0∀x ∈ X, then f ÷ g is differentiable

P 3.4.7: If f as above has all partial derivatives on X and if they are all continuous on X, then f is differentiable on X. The
differential is the Jacobi Matrix of f at x0. This implies that most elementary functions are differentiable.

P 3.4.8: (Chain Rule) For X ⊆ Rn and Y ⊆ Rm both open and f : X → Y and g : Y → Rp are both differentiable. Then g ◦ f
is differentiable on X and for any x ∈ X, its differential is given by d(g ◦ f)(x0) = dg(f(x0)) ◦ df(x0). The Jacobi matrix is
Jg◦f (x0) = Jg(f(x0))Jf (x0) (RHS is a matrix product)

D 3.4.11: (Tangent space) The graph of the affine linear approximation g(x) = f(x0) + u(x− x0), or the set

{(x, y) ∈ Rn × Rm : y = f(x0) + u(x− x0)}
D 3.4.13: (Directional derivative) f has a directional derivative w ∈ Rm in the direction of v ∈ Rn, if the function g defined on

the set I = {t ∈ R : x0 + tv ∈ X} by g(t) = f(x0 + tv) has a derivative at t = 0 and is equal to w R 3.4.14: Because X is open,

the set I contains an open interval ] − δ, δ[ for some δ > 0. P 3.4.15: Let f as previously be differentiable. Then for any x ∈ X

and non-zero v ∈ Rn, f has a directional derivative at x0 in the direction of v, given by df(x0)(v) R 3.4.16: The values of the
above directional derivative are linear with respect to the vector v. Suppose we know the dir. der. w1 and w2 in directions v1 and
v2, then the directional derivative in direction v1 + v2 is w1 + w2

3.5 Higher derivatives

D 3.5.1: f is in class C1 if f is differentiable and all its partial derivatives are continuous. f is of class Ck if it is differentiable
and each of its partial derivatives are in Ck−1. If f ∈ Ck(X;Rm) for all k ≥ 1, then f ∈ C∞(X;Rm)

P 3.5.4: (Mixed derivatives commute) ∂x,yf = ∂y,x, as well as ∂x,y,z = ∂x,z,y = . . ., etc (all mixed derivatives commute) Since we

have symmetry, we can use the notation ∂xm1
1 ,...,xmn

n
f = ∂k

∂xm f = Dmf = ∂mf , where m = (m1, . . . ,mn) and m1 + . . . +mn = k.

There are
(
n+k−1

k

)
possible values for m and e.g. (1, 1, 2) corresponds to the derivative ∂4f

∂x∂y∂2z

R 3.5.6: Due to linearity of the partial derivative ∂m
x (af1 + bf2) = a∂m

x f1 + b∂m
x f2

Ex 3.5.8: (Laplace operator) f ∈ C2(X), ∇f ∈ C1(X;Rn), so div(∇f) =

n∑
i=1

∂

∂xi

(
∂f

∂xi

)
=

n∑
i=1

∂2f

∂x2
i

(called Laplacian , ∆f)

D 3.5.9: (Hessian) f : X → R in C2. For x ∈ X, the Hessian matrix of f at x is the symmetric square matrix

Hessf (x) = (∂xi,xj
f)1≤i,j≤n = Hf (x) (i-th row, j-th column)

3.6 Change of variable

The idea is to substitute variables for others that make the equation easier to solve. A common example is to switch to polar
coordinates from cartesian coordinates, as already demonstrated with continuity checks

3.7 Taylor polynomials

D 3.7.1: (Taylor polynomials) Let f : X → R with f ∈ Ck(X,R) and y ∈ X. The Taylor-Polynomial of order k of f at y is:

Tkf(y;x− y) =
∑
|i|≤k

∂if(y)(x− y)i

i!

where i is a multi-index, so:
• i = (i1, . . . , in) (each ij ≥ 0)
• |i| = i1 + . . .+ in

• ∂i = ∂i1
1 . . . ∂in

n

• (x−y)i = (x1−y1)
i1 · . . . ·(xn−yn)

in

• i! = i1! · . . . · in!

The concept this formula uses is that we iterate through all possible partial derivatives of f and assigns each a multi-index i. To
denote that we want to take the partial derivative ∂112, we use i = (2, 1, 0), since we take the derivative of the first variable twice,
of the second variable once and never of the third variable. So the expression is thus now:

∂112f(y)(x1 − y1)
2(x2 − y2)

1(x3y3)
0

2!1!0!
=

∂112f(y)(x1 − y1)
2(x2 − y2)

2
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3.8 Critical points

D 3.8.2: (Critical Point) For f : X → Rn differentiable, x0 ∈ X is called a critical point of f if ∇f(x0) = 0 R 3.8.3: As in 1
dimensional case, check edges of the interval for the critical point.
To determine the kind of critical point, we need to determine if Hf (x0) is definite:

• positive definite ⇒ x0 local max • negative definite ⇒ x0 local min • indefinite ⇒ x0 point of inflection

D 3.8.6: (Non-degenerate critical point) If det(Hf (x0)) ̸= 0 (if Hf (x0) is semi-definite, then det(Hf (x0)) = 0, thus degenerate)
To figure out if a matrix is definite, we can compute the eigenvalues. A is positive (negative) definite, if and only if all eigenvalues
are greater (lower) than 0. A is indefinite if and only if it has both positive and negative eigenvalues. A is positive (negative)
semi-definite if and only if all eigenvalues are greater (lower) or equal to 0. (Compute Eigenvalues using det(A− λI) = 0)

For 2× 2 matrices, we can use the following scheme:

det(A)

indefinite

Tr(A)
pos. def.

neg. def.
Tr(A)

pos. semi-def.

neg. semi-def.

A is zero

positive0

negative

positive

negative

positive

negative 0
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4 Integral Calculus in Vector Space

4.1 Line integrals

D 4.1.1: Let I = [a, b] be a closed and bounded interval in R. f : I → R with f(t) = (f1(t), . . . , fn(t)) continuous (also fi cont.).

(1) Then

∫ b

a

f(t) dt =

(∫ b

a

f1(t), . . . ,

∫ b

a

fn(t)

)
(2) Parametrized Curve in Rn is a continuous map γ : I → Rn, piecewise in C1, i.e. for k ≥ 1, we have partition a = t0 <

t1 < . . . < tk = b, such that if f is restricted to interval ]tj−1, tj , restriction is C1. γ is a path between γ(a) and γ(b)
(3) Line integral X ⊆ Rn is the image of γ as above and f : X → Rn cont.

Integral

∫ b

a

f(γ(t)) · γ′(t) dt ∈ R is line integral of f along γ, denoted

∫
γ

f(s) ds or

∫
γ

f(s) ds⃗ or

∫
γ

ω,

with ω = f1(x) dx1 + . . . fn(x) dxn

We usually call f : X → Rn a vector field , which maps each point x ∈ X to a vector in Rn, displayed as originating from x

D 4.1.4: (Oriented reparametrization) of γ is parametrized curve σ : [c, d] → Rn s.t σ = γ ◦ φ, with φ : [c, d] → I cont. map,
differentiable on ]a, b[ and for which φ(a) = c and φ(b) = d. Conversely, γ = σ ◦ φ−1

P 4.1.5: For f : X → Rn with X containing the image of of γ and equivalently σ, we have

∫
γ

f(s) · ds⃗ =

∫
σ

f(s) · ds⃗

D 4.1.8: (Conservative Vector Field) If for any x1, x2 ∈ X the line integral

∫
γ

f(s) ds⃗ is independent choice of γ in X

R 4.1.9: f conservative iff
∫
γ
f(s) ds⃗ = 0 for a closed (γ(a) = γ(b)) parametrized curve

T 4.1.10: Let X be open set, f conservative vector field. Then ∃C1 function g s.t. f = ∇g. If any two points of X can be joined
by a parametrized curve, then g is unique up to a constant: if ∇g1 = f , then g − g1 is constant on X

R 4.1.11: Two points x, y ∈ X can be joined by parametrized curve γ if γ(a) = x and γ(b) = y. In that case, X is called
path-connected . It is true when X is convex (e.g. when X is a disc or a product of intervals). If f is a vector field on X, then g
is called a potential for f and it is not unique, since we can add a constant to g without changing the gradient.

P 4.1.13: For a vectorfield to be conservative, a necessary condition is that
∂fi
∂xj

=
∂fj
xi

for any 1 ≤ i ̸= j ≤ n ∈ N

D 4.1.15: (Start Shaped Set) X ⊆ Rn is star shaped if ∃x0 ∈ X s.t. ∀x ∈ X, the line segment from x to x0 is contained in X,
and we also say that X is star shaped around x0

T 4.1.17: Let X start shaped and open, f a C1 vector field fulfilling Proposition 4.1.13. Then f is conservative.

D 4.1.20: Let X ⊆ R3 open and f a C1 vector field. Then the curl of f is the conservative vector field curl(f) =

∂yf3 − ∂zf2
∂zf1 − ∂xf3
∂xf2 − ∂yf1


4.2 Riemann integral in Vector Space

The integral of a continuous function f : X → R with X ⊆ Rn bounded and closed, is denoted
∫
X
f(x) dx with properties:

(1) (Compatibility) If n = 1 and X = [a, b], integral is the indefinite integral as per Analysis I

(2) (Linearity) If f , g are continuous on X and a, b ∈ R, then
∫
X

(af(x) + bg(x)) dx = a

∫
X

f(x) dx+ b

∫
X

g(x) dx

(3) (Positivity) If f ≤ g, then so is the integral and if f ≥ 0, so is the integral and if Y ⊆ X, then int. over Y is ≤ over X

(4) (Upper bound & Triangle Inequality)

∣∣∣∣∫
X

f(x) dx

∣∣∣∣ ≤ ∫
X

|f(x)| dx and

∣∣∣∣∫
X

(f(x) + g(x)) dx

∣∣∣∣ ≤ ∫
X

|f(x)| dx
∫
X

|g(x)|

(5) (Volume) The integral of f is the volume of {(x, y) ∈ X × R : 0 ≤ y ≤ f(x)} ⊆ Rn+1. If X is a bounded rectangle, e.g.
X = [a1, b1]× . . .× [an, bn] ⊆ Rn and f = 1, then

∫
X

dx = (bn − an) . . . (b1 − a1). We write Vol(X) or Voln(X)
(6) (Multiple integral) (Fubini) If n1, n2 ∈ Z s.t. n = n1 + n2, then for x1 ∈ Rn1 , let Yx1

= {x2 ∈ Rn2 : (x1, x2) ∈ X} ⊆ Rn2 .
Let X1 be the set of x1 ∈ Rn such that Yx1

is not empty. Then X1 and Yx1
are compact.

If g(x1) =

∫
Yx1

f(x1, x2) dx2 is continuous on X1, then∫
X

f(x1, x2) dx =

∫
X1

g(x1) dx =

∫
X1

g(x1) dx1 =

∫
X1

(∫
Yx1

f(x1, x2) dx2

)
dx1

Exchanging the role of x1 and x2 we have (with Zx2 = {x1 : (x1, x2) ∈ X}) if integral over x1 is continuous.∫
X

f(x1, x2) dx =

∫
X2

(∫
Zx2

f(x1, x2) dx1

)
dx2

(7) (Domain additivity) If X1 and X2 are compact and f continuous on X = X1 ∪X2, then (for Y = X1 ∩X2)∫
X

f(x) dx+

∫
Y

f(x) dx =

∫
X1

f(x) dx+

∫
X2

f(x) dx

In particular, if Y empty (or size is “negligible”), then
∫
X
f(x) dx =

∫
X1

f(x) dx+
∫
X2

f(x) dx

D 4.2.3: For m ≤ n ∈ N, a parametrized m-set in Rn is a continuous map f : [a1, b1] × . . . × [am, bm] → Rn, which is C1 on
]a1, b1[× . . .×]am, bm[. B ⊆ Rn is negligible if ∃k ≥ 0 ∈ Z and parametrized mi-sets fi : Xi → Rn with 1 ≤ i ≤ k and mi < n s.t.

X ⊆ f1(x1) ∪ . . . ∪ fk(Xk). A parametrized 1-set in Rn is a parametrized curve. Ex 4.2.4: Any R× {0} ⊆ R2 is negligible in R2,
or more generally, if H ⊆ Rn is an affine subspsace of dimension m < n, then any subset of Rn that is contained in H is negligible.
Image of par. curve γ : [a, b] → Rn is negligible, since γ is a 1-set in Rn

P 4.2.5: X compact set, negligible. Then for any cont. function on X,

∫
X

f(x) dx = 0
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4.3 Improper integrals

As in the one-dimensional case, we are looking at integrals that are undefined at the edge of the interval and thus, we apply a limit
to them, thus approaching said edge of the interval.

For example, in the two-dimensional case, disc DR = [−R,R]2 with radius R

lim
R→∞

∫
DR

f(d, y) dx dy

4.4 Change of Variable Formula

T 4.4.1: (Change of variable formula) X,Y ⊆ Rn compact, φ : X → Y continuous. For the open sets X,Y , negligible sets B,C

and restriction of φ : X → Y to open set X is a C1 bijection, we can write X = X ∪ B and Y = Y ∪ C. The Jacobian Jφ(x) is

invertible at all x ∈ X. For any cont. func. f on Y we have

∫
X

f(φ(x))|det(Jφ(x))| dx =

∫
Y

f(y) dy

4.5 The Green Formula

D 4.5.1: (Simple parametrized curve) γ : [a, b] → R2 is a closed parametrized curve s.t. γ(t) ̸= γ(s) (if s ̸= t and {s, t} = {a, b}),
s.t. γ′(t) ̸= 0 for a < t < b. If γ only piecewise in C1 in ]a, b[, then only apply when γ′(t) exists.

T 4.5.3: (Green’s Formula) X ⊆ R2 compact set with boundary ∂X = γ1 ∪ . . . ∪ yk with γi = (γi,1, γi,2) : [ai, bi] → R2 a simple
closed parametrized curve, with property that X lies “to the left” of tangent vector γ′

i(t) based at γi(t). f = (f1, f2) is a vector
field of class C1 on open set containing X. Then:∫

X

(
∂f2
∂x

− ∂f1
∂y

)
dx dy =

k∑
i=1

∫
γi

f · ds⃗

Corollary 4.5.5: X ⊆ R2 compact with boundary ∂X as before. γi as above, then

Vol(X) =

k∑
i=1

∫
γi

x ds⃗ =

k∑
i=1

∫ bi

ai

γi,1(t)γ
′
i,2(t) dt
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