1 Grundlagen

Axiome der reelen Zahlen

R ist ein kommutativer, angeordneter & ordnungsvollstandiger
Korper. Ordnungsvollstandigkeit unterscheidet R von Q.
Al Vz,y,zeR z+y+z)=(@+y) +=2

A2 VreR r+0==x

A3 VzeR3IyeR z+y=0

A4 Vz,zeR r+z=z+2x

M1 Vz,y,zeR z-(y-z)=(x-y) =z
M2 VreR z-l==

M3 Vr#0eRIyeR z-y=1

M4 Vz,zeR T-z=z-

D Vr,y,z € R z-(y+z)=x-y+x-z
Ol VzeR r<zx

02 Vzr,y,z€eR r<yANy<z = x<z
03 Vz,yeR r<yNy<z = z=y

04 Vz,yeR x <yVy<z (Total)
K1 Vz,y,z€R z<y = z+z2<y+z
K2 VYVr>0,y>0€R =z-y>0

Ordnungsvollstindigkeit
VA BZDCR sd. VaeAbeB (a<bh):
JeeR: VaceAVbeB (a<cAc<D)

Archimedisches Prinzip

Vr>0,ycR IneN: (y<n-z)
Absolutbetrag
Def: VzeR |z|:=max{z, —z}

(3) vreR |z|>0

(i) Ve,yeR vyl = x| |yl

(i) Vo,yeR |z +y| < ||+ [yl

(i) Vo,yeR |z+y| = |z -yl
Young’'sche Ungleichung
Ve>0Vr,yeR: 2lzy| < ex? + 1y

Bernoulli Ungleichung
VneNz> -1 I+z)">1+n-x

Infimum & Supremum
Fiir A C R:
. {min{ceRVaeA: a<c}
+00  falls oben unbeschr.
inf A :— {max{CERVaeA:c<a}

—o0  falls unten unbeschr.

Monotonie
Fir f:D—R, DCR, =x,y€D:
mon. wachsend & p< y = f(z) < fly)
str. mon. wachs. &5 4 < y = f(z) < f(y)
mon. fallend &> y = f(z) > f(y)
str. mon. fallend £ 1<y — flx) < f(y)
Intervalle
Untermengen von R.
offenes Intervall £ (a,) ={xr €eR|a<z<b}
geschl. Intervall PN [a,b) ={z eR|a<z<b}
kompakt DU g [a,b], a<b
b— da,b:a<b bl=1
Linge £(I) := { ¢ Jwbiash o
400 else

Satz von Cauchy-Cantor
D122 ...21y DIns1 D...sd. Vi>1:I; kompakt.

L) <400 = N1, #0
n>1

Injektivitat & Surjektivitat

Fir eine Funktion f: X — Y

def.

Injektiv. < Va,be X: f(a)=f(b) = a=b

Surjektiv BN YyeY: JreX: f(z)=y

Quadratische Gleichungen

a,b,ceR, a#0

— —btvbi-dac
2-a

T12 = D=b—4-a-c

Binomialkoeffizient
n,k e N*, n>k

(a )" = i (P)am* ot

1

(%) = From

2 Folgen

N*— R
N* - N*Vn i(n) <l(n+1)

Folge (an)n>1 a:
Teilfolge  (ain))im>1 -
Limes

ILm (an) :=1 ist eindeutig definiert, falls:
(i) Ve>0: {neN|a,¢]|l—¢l+¢]} ist endlich
(15) Ye>0,3IN>1: Jap,—1I|<e Vn>N

Konvergenz

(an)n>1 ist konvergent, falls lim a,, existiert.
- n—oo

Konvergente Folgen sind immer beschrankt.
Nicht umgekehrt: (—1)™ ist beschrankt, aber nicht konvergent.

Rechenregeln Limes
Fiir konvergente (an)n>1, (bn)n>1:

(7) nli_)n;o(an +by) = nli_)n;o(an) + nh_{%o(bn)
(i) nler;o(an ~by) = nler;o(an) . nlL%(bn)
(i) lim () = lim (a)\ lim (5,)
wobei Vn > 1(b, # 0) A T}l_}n;o(bn) #0
(iv) 3K VYn>K(a, <b,) = nan;O(an) < nl;n;o(bn)

Limes Inferior & Limes Superior

Fiir (an)n>1 beschrankt:
by :=inf{ay | kK > n} cn i=suplag | k > n}

el = e (6
limsup(a,) := lim (¢,)
n—o00 =€

Vn € N(b, < ¢,) = liminf(a,) < limsup(a,)

n—oQ n—oo

Komplement-Trick
Nitzlich fur einige Grenzwerte:

+b— (cx+d)
var+b—+Vexr+d= ar
var+b++ver+d




Komplexe Folgen

(bn)n>1 €R, (an)p>1 €C

In C gelten die selben Resultate, aber:

(1) VYneN: |a,| <b, A nlL)II;O(bn) =0= nlingo(an) =0
(#4) liminf(ay) und limsup(a,) existieren nicht.

(@n)n>1 € C konv. <= (R(an))n>1, (S(an))n>1 konv.

2.1 Konvergenzkriterien
Monotoner Konvergenz-Satz

(@n)n>1 mon. fallend, (b,,),>1 mon. steigend:

ap unten beschr: = (an) = inf{a, | n > 1}

lim

n—o0

b,, oben beschr: = lim (b,) = sup{b, | n > 1}
n—oo

Sandwich-Satz

(an), (bpn), (cp) sd. Vn e N:a, <b, <c,

lim (ap) = lim (¢,) = A = lim (b,) =4

n— oo n— 00 n— 00

Cauchy Kriterium |

(an)n>1 beschr. A liminf(a,) = limsup(a,)
- n—co n—00

Cauchy Kriterium Il
Ve>03IN>1: la,—am|<e Yn,m>N

Bolzano-Weierstrass
(@n)n>1 beschr. = Ex existiert konv. Teilfolge (b,,)n>1

o < 1 <1
hnrggf(an) < nl;ngo(bn,) < hrrlnﬁsolip(an)

3 Reihen

Reihe (Sn)nZI s.d. Sn = 2221 (47
Konvergenz > 7 ai:= lim >} . ay
n—oo

Absolute Konvergenz
ey lak| konv. = 372 ay konv.

V(ar)k>1: | 2pey okl < 2202 lakl

Rechenregeln
Fiir konvergente Reihen >°/° | ax, >°72, bj, a € R:

(1) >opei(an +bk) (o ar) + (3252, by)
(1) Ypoi(a-ar) = a- (30l ak)

Konvergente Reihen sind Nullfolgen
3% yan konv = lim a, =0

n—oo

Nicht umgekehrt: >°>° Tl, divergiert, obwohl % =0.

lim
Doppelfolge (a;;)i,j>1
Doppelreihe 377 (Zj‘io i), Z;io(zzo ai;j)

Die beiden Grenzwerte konnen verschieden sein.
Cauchy

dB >0: Zgo ;‘”:o laij] < B ¥Ym >0
= §; = Z;io ai; und U; := 72 a; ; konv. abs.

Yoo Si =Ly und Z;io U; = Ly konv. abs. s.d. Ly = Ls.
Jede Anordnung 0 : N — N X N s.d. by := a,(x) konv. abs.

Cauchy Produkt

fo:o(Z?:o an—j - bj)
= a,by + (aobl + a1b0> + (a0b2 + ai1by + agbo) +...

3.1 Konvergenzkriterien
Vergleichssatz

Fiir 3521 k. Yopey b mit VE > 1 (0 < ax < by)
oder 3K > 1 (0 < ax < by) Vk > K
> e bi konv. — Y oo, ax konv.

> ey ag div. = >, by div.

Cauchy Kriterium

Ve >0dN >1 Ym>n>N

| Dok, ak] <€
Monotoner Konvergenz-Satz

Vk € N*(ax > 0) konv. <= >_, a oben beschrinkt
Leibniz

Fir (an)n>1 mon. fall. und ¥n(a,, >0), lim a, = 0:

n—oo
S (=1)**1ay konv.

Dirichlet
> peq ai abs. konv.

= V¢ : N* — N* (bijektiv) : > 7° | ag(x) abs. konv.

2211 ap = 220:1 Qe (k) unabh. von ¢.

Quotientenkriterium

lim sup % <1 = > a, abs. konv.

n— oo

lim sup w >1 = > a, div.

n— 0o lan

Wobei (an)n>1 mit Vn(an, # 0)

Wourzelkriterium

limsup |a,|* <1 = Y.°°  a, abs. konv.

n— oo

limsup |a,|v >1 = 2% a, div.

n— oo

Beide Kriterien geben keine Aussage bei genau 0.

3.2 Fundamentalreihen

Potenzreihen (Konvergenzradius)

> ney iz abs. konv. <= |z| <p
> e iz div. — |z|>p

+00, lim sup |cg|* = 0

n— oo

p:

n—oo n—r oo

Geometrische Reihe

Yo d" =1 = ld <1

Harmonische Reihe

Yoot % =0

Zeta Funktion

C(s) =307 L konv. <= s>1

n=1 ns

Exponentialfunktion
exp(z) == 3.°° (2 = ¢ konv. Vz € C

n=0 n! —

(lim sup |ck\%)71, lim sup |Ck|% >0



4 Stetige Funktionen

DCR, zo€D, f,g:D—R, MNeER

Stetigkeit

f stetg in zg PN Ve >0,30 >0:Vx € D :
|z — 2ol <6 = [f(z) — f(zo)| <€

f stetig &Y veeD: f stetig in x
Stetigkeit durch Folgen

f stetigin g <= V(an)n>1 € D :
lim a, =20 = lim f(a,) = f(xo0)
n—oo n—oo

Rechenregeln
Fir f, g stetig in zq:

(i) 9zo) £0 = L:{zeD|gx) £0} >R

sind stetig in xg.

4.1 Theoreme

Zwischenwertsatz
VeeR: f(a) <c< f(b)

= Fzel:a<z2<bAf(z)=c
I C R (Intervall), f: I — R (stetig), a,b € I

Polynom-Nullstellen
Firalle P:R— R, P(zx)=anz"+...4ao:

an Z0An=21 = Fxr€eR:P(x)=0
Min-Max-Satz

Stetige f sind auf I immer beschrankt.
Ju,vel: f(u)<flz)<flv) Veel
f:I=1la,b] = R, f stetigauf I, I ist kompakt

Stetigkeit in Kompositionen
Di,Ds CR, f:Dy— Dz, g:Dy—R

f, g stetig in xo, f(xg) = go f: Dy — Rin g stetig.

f, g stetig = go f:D; — R stetig

Stetigkeit der Umkehrabbildung

I = [a,b] C R ist ein Intervall

f I — R stetig, str. mon.

= f~1: f(I) C R — I stetig, str. mon.
& f(I)=1[f(a), f(b)] ist ein Intervall.

4.2 Funktionenfolgen

Funktionenfolge  (f,)n>1
Formal: eine Abbildung N = R? s.d. n > f(n) =: f,

Punktweise Konvergenz
(fn)n>1 konv. pw. gegen f: D — R, wenn:
Ve e D: f(z)= lim f,(z)

n—oo

f muss nicht stetig sein, auch wenn Vn € N : f, stetig.
Gleichmassige Konvergenz

(fr)n>1 konv. glm. gegen f: D — R, wenn:
Ve >0,IN >1:Yn> N, Ve € D :|f,(x)—f(x)| <e¢

Wobei N nur von € abh. (nicht von z).
fn glm. konv. = f,, pw. konv.

Altenative Definition fiir gleichmassige Konvergenz
lim sup|f,(z) — f(z)]| =0 < f, glm. konv. gegen f.
n—=0 xeD

Gleichmassige Konvergenz ist stetig
DCR, fn:D—=R, f:D—=R

Vn € N: f, stetig in D, glm. konv. gegen f
—> f auch stetig in D.

Es folgt: f nicht stetig = f,, nicht glm. konv.

Cauchy Kriterium
fn: D — R konv. glm. in D, wenn:
Ve >0,IAN >1:Yn,m > N,Vx € D : |fp(x)— fm(2)] <€

Limes-Funktion stetiger glm. konv. Folgen
fn: D — R glm. konv. Folge stetiger Funktionen.
= f(z):= lim f,(z) ist stetig.

n—oo

GIm. Konvergenz von Funktionenreihen
Yoo fr(x) konv. glm. in D, falls:
Sp(z) :=>"1_, fe(x) glm. konv. ist.

3

Vergleichssatz fiir stetige Funk.-Reihen

DCR, fn:D—R, allef, stetig

Vo € D:|fn(x)| < ¢ fur (cp)n>1 s.d. D oo cn konv.
= > fu(x) konv., f(z):= 37" fn(x) stetig in D.
Potenzreihen

Yokt sd. p>0,  fz) =Y ezt |zl <p

= VO<r<p: >, ,ckz” konv. glm. in [—r,7]
&  f:(—p,p) — Rist stetig.

4.3 Grenzwerte von Funktionen
DCR, f,g:D—R. xo€R ist Haufungspunkt fir D

Haufungspunkt

o € R ist ein Haufungspunkt in D, falls:
V6>0:((1‘0—6,$0+5)\{{E0})QD7§®

Man kann (in D) beliebig nah zu xo, wobei xg ¢ D mdoglich.

Grenzwert fiir Funktionen

lim f(z) = L, wenn fiir L gilt:

Tr—xo

Ve > 0,30 > 0:

Vee DN ( (xo—d,z0+d)\{ a0} ): |flx)—L|<e

Grenzwert durch Folgen
lim f(z) = L gdw.
T—rT0o

V(an)n>1 in D\ {xo} s.d. lim a, =x¢: lim f(a,) =1L
= n—00 T—T0

Stetigkeit durch Grenzwert
f stetigin g € D <= lim f(x) = f(z0)

T—xTo

Rechenregeln

Wenn lim f(x), lim g(z) exisieren:
Tr—xo Tr—x0

lim (f +¢)(z) = lim f(z) + lim g(z)

r—xo Tr—rTo
Jim (- g)(z) = lim f(z)- lim g(z)

Grenzwerte abschatzen
f<g = lim f(x) < lim g(z) falls existent
T—rT0 T—T0o

Sandwich bei Funktionen
an<f<gs A limg(z)= lim gs(x)
T—To T—TQ

= lim f(x) existiert: lim f(z) = lim g;(z)
Tr—x0 T—xTo T—XTo



Komposition und Grenzwert
Hier: D,E CR, zo Hf-P.inD, f:D—FE, g¢g:E—R

Jim g(f(z)) = g( lim f(x)), falls g stetig in lim f(z)
5 Differenzierbare Funktionen

Differenzierbarkeit

fdiffbarinmy &5 lim L=/ eyigtiert,
T—T0

fdiff-barin D &% Vag e D: fin 2 diff-bar.

f(z) := lim f(zo +h) — f(zo) _ e f(@) = f(xo)

h—0 h z=xo T — To

DCR, f,g:D —R, x0Haufungspunkt von D

Weierstrass

fdiff-barinzy < dceR, r:D—-R:

f(z) = f(xo) + c(z — wo) + r(2)(z — 20)

r(xo) = 0 und r stetig in x¢

Weitere Bedingung

fin zq diff-bar <= J¢p: D - R, ¢ stetig in xq s.d.
VeeD: f(z)= f(zo)+o(x)(x—x0), ¢(x0) = f"(20)

Differenzierbarkeit impliziert Stetigkeit
f diff.-bar (in ) = f stetig (in x9) = f integr.
Nicht umgekehrt: f(z) = |z| ist stetig, aber nicht diff.-bar.

Rechenregeln
(@) (f+g)(@o) = [f'(zo)+ 9 (20)
(@)  (f-9)(xo) = [f'(w0)g(xo)+ f(z0)g'(20)
(i) (g)/(xo) _ [ (xo)g(xg);)fz()xo)g (z0)
fyg in zo diff.-bar, (ii7) :  g(xp) # 0
Kompositionen
D,ECR, g€ DistH-P.inD, f(xo)ist H-P.in E

f:D — E diff-barin o, g¢:E — R diff.-bar in f(z0)
go f: D — R diff.-bar in xq:
(g0 f) (o) = g'(f(20)) [ (o)

Ableitung der Umkehrabbildung

Yo ist Haufungspunkt in E, f=1in f(x¢) diff.-bar und:

(f7) (f(=0)) =

f'(wo)

f:D — E ist bijektiv, 20 € D ist H-P.,
f diff-barin zg, f~!in f(zo) stetig.

5.1 Erste Ableitung

Spezielle Punkte: Lokale Extrema

DCR, f:D—R, z9€D

xo lokales Minimum, wenn:

36 >0, Vee(zg—3b,xzo+0)ND: f(x) < f(xo)
o lokales Maximum, wenn:

30 >0, Vee(xzg—d,xo+d)ND: f(z)> f(xo)

Sattelpunkte & Wendepunkte sind keine Extrema.

Lokale Extrema durch Ableitung
f:(a,b) =R, z¢ € (a,b), finxo diff.-bar
Falls 2 ein lok. Extremum ist: f’(z) = 0.

f(z0) >0 = 36 >0:
f(x) > f(wo) Va € (wo,z0+9),
f(x) < f(wo) Va € (xo—6,20)
f(xo) <0 = 36 >0:
f(x) < f(wo) Va € (x0,20 + ),
f(@) > f(zo) Va € (xo—0,20)
Verhalten von [ mittels f’
f,9 : [a,b] — R stetig, in (a,b) diff.-bar

f'(§) =0 = f ist konstant
F(&) = g'(€) — FceR: f(z) = glx) + ¢ Va € [a,]
f(§) >0 = f auf [a,b] mon. wachsend.
(&) >0 = f auf [a,b] str. mon. wachsend.
f(§) <0 = f auf [a,b] mon. fallend.
/(&) <0 = f auf [a,b] str. mon. fallend.
=0 [f(E) <M Ve € (ah)

>
= V1,22 € [a,b] 1 |f(x1) — fa2)| < M|zy — 29

5.2 Hohere Ableitungen

Definitionen: Hohere Ableitungen

D CR, f:D— Rdiff-barin D, jedes xg € D ist H.P. von D,
fO =g, n>2

£ ist n-mal diff-bar in D €& =1 in D diff.-bar.
f = (f*=1)’ die n-te Ableitung von f.

f ist n-mal stetig diff.-bar in D £ty f" stetigin D

fist glatt €% v > 1 £ ist n-mal diff-bar.

Stetigkeit tieferer Ableitungen
f n-mal diff.-bar <= f n — 1-mal stetig diff.-bar

Rechenregeln

DCR, n>1, f,g:D— R n-maldiff-barin D

(i) (f+g)™ =f0) 4 g0

(id) (f-9)™ =20, (1) fPgnh

(iti) Vx € D:g(x) #0 = Lin D n-mal diff -bar

Komposition hoherer Ableitungen
E,D CRsd. allezg € E, D H.-P. sind,
f:D—FE, g:E—R, f gn-maldiff-bar
g o f ist n-mal diff.-bar.

(fog)™(z) = Zi:l A i (2) (g™ o f)(x)
A, i ist ein Polynom in f/, f() ... fn+1=k)

Extrema mehrfach differenzierbarer f
n>0, a<zyo<b, f:]a,b]—Rin (a,b) (n-+1)-mal diff-bar
Wenn: f'(z0) = f@(x0) = ... = f(V(x0) = 0

n =50, o lokales Extremum = f(**tD(z) =0
n=91, f+t(29) >0 = x str. lokales Minimum
n=91, f*t(29) <0 = a0 str. lokales Maximum

Extrema zweimal differenzierbarer f
f i ]a,b] — R, stetig, 2-mal diff.-bar in (a,b)
a<x9<b, f'(xg)=0,dann:

f@(x0) >0 = g str. lokales Minimum
f@(29) <0 = ¢ str. lokales Maximum



5.3 Wichtige Theoreme

Satz von Rolle
f: (a,b) — R stetig, f diff.-bar in (a,b)

flay=f(b) = 3e(@b): =0
Satz von Lagrange
f:(ab) CR—Rin (a,b) diff.-bar:

3 € (a,0) : (b)) — fla) = f'(€)(b—a)

Satz von Cauchy
f,g: [a,b] — R stetig, in (a,b) diff--bar
3 € (a,b) : g"(€)(f(b) — f(a)) = [/(€)(9(b) — g(a))
Falls Vz € (a,b), ¢'(z)#0:

g(a) # g(b), L= - LG

Satz von L’Hépital

Falls: lim f(z) =0, lim =0, lim gl(i) existiert:

T—b~ T—b~ r—b~ @)
!

lim f@) =l /(@)

a—b-g(x)  a—b- g'(x)

Auch falls: b = +o0, liril 5;8) =400, x—a't
z—b—

fyg: (a,b) = R diff.-bar in (a,b), g¢'(z) #0 Vz € (a,b)

5.4 Konvexe/Konkave Funktionen

Definition: Konvex

I C R ist ein beliebiges Intervall, f:I — R

f konvex auf I, falls: Vo <y eI, VYAel0,1]:
fOr+1=XNy) < M(@)+(1-=NFf(y)

f str. konvex auf I, falls: Va <y €I, VA€ (0,1):
fARz+(1=XNy) < AM@)+1=-Nf(y)

Summe konvexer Funktionen ist konvex
f:I—R, fkonvex, n>1, {zi,...,zn} CR,
PYI A €10,1], P A =1

FOZi Niwe) < 350 Aif (a0)
Bedingungen fiir Konvexitat
f:1— R, f beliebig

f (str.) konvex <= Vrog<zx <z €l:
f(@)—=F(xo) </< S(@1)—f(z)

r—Io xr1—T

f:(a,b) =R, fdiff.-barin (a,b)
f (str.) konvex <= f’ (str.) mon. wachsend.

f:(a,b) =R, f 2 maldiff.-barin (a,b)

f (str.) konvex < f” >0 (bzw. f” > 0) auf (a,b).

5.5 Potenzreihen & Taylorpolynome

Gleichmassige konvergenz erhilt Differenzierbarkeit
fn : (a,b) — R ist Funktionenfolge,
fn einmal in (a,b) diff.-bar Vn > 1

(fa)n>1 und (f)n>1 glm. konv. in (a,b).
= f:= lim f, ist stetig diff.-bar s.d. f/ = lim f}
n—oo n— o0

Potenzreihen sind differenzierbar
>89, cxx® ist Potenzreihe, s.d. p >0
fla) =320 er(x — xo)¥ ist auf (x¢ — p, 2o + p) diff.-bar.

(@) =302 k- cp(z —x0)k ! Va € (zo — p,xo + p)

Potenzreihen sind glatt
f(x) =302 cu(z — )" ist glatt auf (zg — p, 20 + p)

fO () = Z:O:J Ck(kﬁi'])'(x —20)"77, wobei ¢; = f J)(IO)

Approximation glatter f durch Polynome
f i [a,b] — R stetig, (n + 1)-mal diff.-bar in (a,b)
Va<x<b, e (a,x):

n *) (g (n+1) "
f@) = Yiso T2 @ — )F + L P (@ — o)t

Taylor Approximation

a€Rsd c<a<d Vreled], 3 < (x,a):

% f(a §r(g)
=3 e o

k=0
=3 [Rn

(x —a)™*!

=T,

Wobei: Vm > 1 3n >1: f0)(z0) = T,(Lm)(xo)

R, wird als Fehlerabschatzung um a genutzt.

f i [e,d] — R stetig, (n + 1) mal diff.-bar in (¢, d)

Taylor-Approximation bei nahen Punkten
Die Taylor-Approximation bezieht sich wirklich nur auf = a. Beispiel:

0 r=0
fle) = {exp<—;2> £ 40

Wenn a =0 ist T,(z) =0 Vz € R Vn > 1.
Aber lim f(z) = lim f(xz) =1 konvergiert sehr schnell.
Tr—00 Tr—r— 00



6 Das Riemann Integral
a,beR, a<b,

I = [a,b]

Partition von I:
Verfeinerung von P:

P C [a,b], {a,b} C P, P endlich
Partition P’ s.d. P/ C P

Partitionenmenge von I: P(I) := {P | P ist Partition von I}

Fiir alle Py, P, vom selben I = [a,b] gilt:
P; U P, ist auch eine Partition von I

HP/QI: P/Cpl/\P/CPQ

Ober- und Untersummen

f i [a,b] — R ist beschrankt, P C [a,b] ist Partition von [a, ]

MeR: M>0 A |f(x)|<M Vzcla,b]

(51' =Ty — Ti—1 fir P = {xo,...,xn}

s(f,P) = Y1 fidi, fi= iI<1f< f(z)
Ti—1S5STST;

S(f, P) =31, Fidi, Fi= sup f(z)

z;—1<x<x;

Fiir beliebige Partitionen Py, Po:  s(f, P1) < S(f, P»)

s(f) = P:%)S(ﬁ P), S(f) = Peigl,fms(f, P)
s(f) < S(f)

6.1 Riemann-Integrierbarkeit

Riemann-Integrierbarkeit

f i [a,b] = R (beschr.) ist integrierbar &ty s(f)=S(f)
b
[ #@) o= s(p) =501

Integrierbarkeit durch Ober-/Untersummen

f :[a,b] = R (beschr.) ist integrierbar

< Ve>0,IPeP): S(f,P)—s(f,P)<e
Integrierbarkeit als Grenzwert

Sei Ps(I) := {Partitionen P C [a,b] | R ax (>, <4}

f:[a,b] = R (beschr.) ist mtegnerbar

< Ve>0,30>0:VPePs(I): S(f,P)—s(f,P)<e

Polynombriiche sind Integrierbar, ohne Nullstellen
P,Q : R — R sind Polynome

-3z € [a,b]: Q(z) =0 = g:

Stetige Funktionen sind integrierbar
f:]a,b] = R stetig = [ ist integrierbar.
Nicht umgekehrt: Treppenfunktionen sind integr., aber nicht stetig.

[a,b] — R ist integr.

Monotone Funktionen sind integrierbar
f:a,b] = R monoton = f ist integrierbar.

Operationen erhalten Integrierbarkeit

f,g:[a,b] = R beschr. und intgrierbar, X € R
f+ga )\f’ fg7 ‘f|7 min(f> )7 max(f, )a 5
sind integrierbar. (Fur :g(z)] > 0)
Konstanten und Addition
I kompakt, f1, f2: I — R beschr. integr., A;,X2 €R

b b b
/ )\1f1 ($)+)\2f2 (l’) dz = )\1/ f1 (JJ) dl’-i—)\g/ fg(m) dzx

Gleichmassige Stetigkeit

DCR, f:D—R

fin D glm. stetig &5 Ve >0, 36 >0 Va,y € D :
[z -yl <6 = [f(x) = fly)l <e

Gleichmassige Stetigkeit auf kompakten Intervallen

fila, b)) = R
f Stetig auf kompaktem [a,b] = [ glm. stetig auf [a, b]
Integrale erhalten Monotonie

f,9 :[a,b] — R beschr. integr

Vo € [a,b]:  f(z) < g(x
|2 f(e) do| < [0 1f(2)] do

= f f(z dng;g(x) dx

6.2 Wichtige Theoreme

Cauchy-Schwarz

f,9 : [a,b] — R beschr. integr.

/ | f@a(a)

Mittelwertsatz bei Integralen
f:[a,b] = R stetig

3 elabl: [ f(z)de=f(E)b—a)

Konseqzenz des Mittelwertsatz fiir Integrale
fig:]a,b] = R, f stetig,
Vo € a,b]: gz ) > O
= 3¢ € [a,b]: f f(z

g beschr. integr.

) dz = f(€) [F g(x) dx

Integration ist die Umkehrfunktion der Ableitung
a<b, f:][a,b] — R stetig
F(z):[a,b) > R, F(x Hff:(;

ist in [a, b] stetig, diff.-bar und F’'(z) = f(x)
Stammfunktionen

a<b, f:]a,b] — R stetig
F :[a,b] = R ist Stammfunktion von f

& stetig diff.-bar in [a,b] und F' = f in [a, b].
Fundamentalsatz der Differentialrechnung

f i [a,b] = R stetig
Die Stammfunktion F' von f existiert s.d.

[, f(z) dz = F(b) - F(a)

Bogenlange

L= "1+ (J(2))? du

da| < \//abfz(w) dx~\//abg2<:c> d

X



6.3 Integrationsmethoden

Bei rationalen f: Polynomdivision & Partialbruchzerlegung.

Partielle Integration

a<b, f,g:]a,b] — R stetig diff.-bar

/ f(@) - g'(e) dx = £(z) - glz) — / £(2) - 9(x) de
b b
/ f(@)g' () dz = £(5)g(b)—f(a)g(a)— / (@)

Substitution

a<b, ¢:[a,b] — R stetig diff.-bar,
ICR7 ¢([a’b]) CI7 f:I%Rstetig

/(:{ib dxf/f '(t) dt

Umgekehrte Kettenregel

fi]a, /)J *»L dlfF g :[c,d] — R diff, [e,d] C f([a,b])
J 1 (z) dz = f(g(x))

Umformungen

ICR, f:I>R

a,b,ceRsd. [a+c,b+c]C1T

= [T f(x) dz =[] f(t+c) dt

a,b,c € Rsd. ¢#0und [ac, bc] C T
= f flet)dt =1 abccf( ) dx

6.4 Uneigentliche Integrale

Definition: Uneigentliche Integrale
f :[a,00) — R beschr. integr auf [a,b] Vb > a

Falls blim f; f(z) dz existiert:
— 00
o . b
[ flz) doe = bl;rﬁlo [, f(x) dx
Man sagt: f ist auf [a, 00) integrierbar.

Reihenkonvergenz iiber Integration
Sei f :[1,00) = [0,00) mon. fallend.

Sony f(n) konv. <= [ f(z) dx konv.

Integration von [ : (a,b] - R
. . b -
Integrierbar, falls Elg& fa+6 f(x) dz existiert.

Man schreibt dann: fab f(z) dz

6.5 Konvergente Reihen

Integration konvergenter Folgen

fn :la,b] — R Folge beschr. integr. / glm. konv. zu f : [a,b] -+ R

f ist beschr. integr. und hm f fal(z d:c—f f(z) dz

Integratlon konvergenter Reihen
/,, : [(1 U 5 ] Folge beschr |ntegr ZX /',, glm. konv. in [a,b]

Integratlon von Potenzreihen

flx) =30 ek sd. p>0.

VO<r<p:
x

Vo e (—p,p): [y f(t)dt

f auf [—r, 7] integr. und

_ oo c n+1
= neo nr1t

6.6 Approximationsformeln

Bernoulli Polynome
Wir nutzen Polynome P,,, die erfiillen:
Pl="P,4, k>1 und fOP;c Ydrx =0Vk>1

Fiir die Bernoulli-Polynome By, gilt: By (z) = k! Py (z).
By, ist rekursive definiert:

By=1, By_1= Zi—:ol (l,f)Bz =0

By Explizit:

B(z) =3,_o (") BEzF—1 sd. fol Bi(x) de =0

Somit:
Bo(x)=1, Bi(z)=xz—-3, Ba(z)=a2>-z+3,

2
Z?k(x): By(x) Ve:0<zx<1
Bp(x—n) Ve:n<z<n+1

Euler-McLaurin Summationsformel

f:[0,n] — R k-mal stetig diff.-bar, k >1

Firk=1: N

Sy f@) = [y f(x) de+5(f(n)=f(0)+ [y Bi(z)f'(x) da
Firk >2:

> 1f = [, f(x) dz+ 5(f(n) — f(0))

b, GO (f“ 1><> FU=D(0)) + Ry,

s.d Rk = ) (z) da
Stirling’sche Formel
Zur Approximation von n!

| oo Y2mnen™ : n! _
n! T bzw. nlgrgo Ty 1

Via Euler-McLaurin lasst sich praziser beweisen:

nl = V2’T"" exp(12n+R3( n))

sd. [Rs(n)] <33 -5 vn>1



7 Spezifische Funktionen

7.1 Grundfunktionen

Potenzen
fR=R: z—a"

stetig und glatt Vn € N.
n =91 <= f str. monoton wachsend

Polynome
fR=R: zxz—a,2"+...4+ag

stetig und glatt.
deg(f) := max {i € N | a; # 0}

Fur poly. f,g # 0, Nullstellen von g: x1,...,2Zp:
5 R\ {z1,...,zn} > R: 2+ 58 ist stetig.

Betragsfunktion

fTR=R: x|z

stetig, in zg = 0 nicht diff.-bar.

g stetig = |g|(z) := |g(x)]| stetig.
Abrundrungsfunktion

fR=>R: z—[z]:=max{meZ]|m<uz}
f nicht stetig in g <= zg € Z

Fir D=R\Z ist [z] : D — R stetig.

Min.- /Max.-Funktionen

max(f, g)(x) := max(f(x), g(z))
min(f, g)(z) := min(f(z),g(z))

Sind f, g stetig, sind auch max(f, ¢), min(f, g) stetig.

7.2 Beweisfunktionen

Indikatorfunktion von Q
1 z€Q

Vz € R : nicht stetig, nicht integr. in x.

) reQ _
g(:zc)—{lx £ ¢Q g:R—=R

Ist nur in & = % stetig, sonst nirgends.

f:R=R

Van der Waerden Funktion

reR

Sei g(x) = min{|x — m| | m € Z}.

D.h. g gibt die nachste ganze Zahl zu x aus.

[eS) 10"z
fla) =00, 4452

Die Reihe ist glm. konv. auf ganz R und f stetig.

f ist nirgendwo diff.-bar.

Glatte Funktion, ohne konv. Potenzreihe

~Jexp(—%) x#0
e P

fist glatt auf R s.d. Vk > 0: f*)(0) = 0.

Da f(x) >0 Vz # 0 gibt es keine P.-Reihe mit pos. p.

Funktion mit nicht-stetiger Ableitung
T

22 .sin(L) x#0
xTr) =
S
Wobei f’ nicht stetig in xg = 0.

7.3 Exponentialfunktion

Definition: Exponentialfunktion

Vz € C: exp(z) konvergiert.

oo n

exp:C—C exp(z) := Z )
n=0

Exponentialfunktion in R
exp: R — (0, +00)

str. mon. wachs., stetig, surj. und glatt.

exp(z) >0 Ve eR
exp(x) > 1 Ve >0
exp(z) > 1+« Ve e R

exp(x) -exp(y) = exp(z +y) Vr,yeR

Natiirlicher Logarithmus
exp l:= In:(0,+0) =R

str. mon. wachs., stetig, bijektiv und glatt.
In(a - b) = In(a) + In(b) Va,b € (0, +00)

Allgemeine Potenzen

2 : (0,400) = (0,400) := exp(a-In(x))
>0, aeR

a >0 = stetig, bijektiv, str. mon. wachs.
a <0 = stetig, bijektiv, str. mon. fall.

Potenzgesetze

Ya,b e R, Vx>0:
In(z?) = aln(z) 2% =z%*t
(xa)b — xab .130 =1



7.4 Trigonometrische Funktionen

Definition: Trigonometrische Funktionen

Vz € C : sin(z), cos(z) konv. abs.

o 22n+1 23 2’5
. - _\n . Z L Z
sin(2) _;( V'ensm ~ 7 3ts
> 2n 2 4
Z n ? _ ZLE
COS( ):n:O(_l) (271)' 1 21 + 4!

tan(z) = sin(z)

cos(z) COt(Z) = ct )

sin(z)

Trigonometrische Funktionen in R
sin, cos : R — R sind stetig und glatt.

€T

m:=1inf{t > 0 | sin(t) =0} € (2,4)
Vo< x<+6: x> sin(z) >z — &7

Nullstellen von sin in R: {k-7 | k € Z}

sin(z) >0 Vz € (2krm, (2k+ 1))
sin(z) <0 Vz e ((2k+ V)7, (2k +2)7)

Nullstellen von cos in R: {Z + k7 | k € Z} :

cos(z) >0 Vae (—F +2km,—5 + (2k+ 1)m)
cos(z) <0 Vee (—F+2k+1)m -5+ (2k+2)7)

Hyperbelfunktionen

cosh(z) :R—[l,00] = <Ee-
sinh(z) :R—=R = 52_2671

sinh(z T_e "
tanh(z) R —[-1,1] := Cosh((z; = G

sinh, cosh, tanh sind glatt.

8 Tabellen

Credits: Einige Tabellen von D. Camenisch & J. Steinmann

8.1 Trigonometrische ldentititen

Trigonometrische Ildentitdten in C

e’ cos(z) + isin(z)
cos(2)? +sin(2)? = 1
sin(z) = 612_2542
cos(z) = elzgeﬂz
sin(z 4+ w) = sin(z) cos(w) + cos(z) sin(w)
cos(z + w) = cos(z) cos(w) + sin(z) sin(w)
sin(2z) = 2sin(z) cos(z)
cos(2z) = cos(2)? —sin(2)?
e =—1, e¥T=1 % =i

. z . . - . .
sin(z) = 5 kann hilfreich sein um sin(z)™ um zuschreiben.

Trigonometrische Identitaten in R

sin(—x) = —sin(x)

cos(—x) = cos(x)

tan(—x) = —tan(x)

sin(z + %) = cos(z)

cos(z + %) = —sin(x)

sin(x + ) = cos(z)

sin(z + 2m) = sin(z)

sin(x)? = 2(1—cos(2z))

cos(x)? = 2(1+cos(2z))

sin(arctan(z)) = T

cos(arctan(z)) = wé_H

sin(x = ftan@
/1+tan(z)?

cos(x) = \/ﬁw

8.2 Trigonometrische Funktionen: Werte

Funktionswerte am Winkelkreis

(0,1)

(0,-1)
|

Trigonometrische Analogien

3 3
I +
3 3 7 g = =
! + o o = =
s sl s | B | B O
| > > — — 2 ~e
sin — sin cos cos sin —sin — sin sin
cos cos sin — sin — cos —cos cos cos
tan | —tan cot —cot — tan tan —tan tan
Werte der trigonometrischen Funktionen
« 0° 30° 45° 60° 90° 120° 150° 180° | 270°
2 5 3
IESENENENE AN NENE
- 1 2 3 3 1
sin 0 Ff Tf 5 1 5 5\[ 0 —1
3 2 1 1 3
cos 1 5 | 5 3 0 —3 -5 -1 0
tan | 0 | %2 | 1 | V3 —V3 | -2 0




8.3 Integrale & Ableitungen

F(z) | s | ()
T c 0
ail . patl 20 a- o1
m - (ax + b)" 1 (ax 4+ b)™ n-(ax+b)""1-a
In |z| % =z ! Zi = g2
2, e g
o czwtl VI =z %-x%’l
e e’ e’
ﬁ -a® a® a® - In(a)
x - (In|z| — 1) In |z| 1=pt
1ng(ga) ~(In]z[ - 1) log, () I.lrll(@
— cos(x) sin(x) cos(x)
sin(x) cos(x) —sin(x)
—In| cos(z)| tan(z) Cos(lw)Q =1+ tan(z)?
In | sin(z)| cot(x) Sm(lz)Q
x - arcsin(z) + V1 — 22 arcsin(z) 11_362
x - arccos(x) — V1 — 22 arccos(z) — 117z2
x - arctan(z) — w arctan(x) 0
sinh(z) cosh(x) sinh(z)
cosh(x) sinh(z) cosh(x)

In | cosh(z)| tanh(x) Coshl(x)Q =1 — tanh(z)?
arcsinh(x) \/zlzﬁ
arccosh(x) \/x%—l
arctanh() ﬁ

8.4 Taylorreihen
f(x) | 7
e” 1+x+§ %‘?4—%4—0(3:5)
sinz x7%+%+(’)(w7)
sinh(z) z+ % + % + (90(:137)
cos(z) 1-— ””72 + %1 — %—é + O(x®)
cosh(z) I+ 5+ 5+ %+ O(z®)
tan(zx) x+ % + 21“; +O(z7)
tanh(x) T — ? + % +0(2")
log(1 + x) x—%—i—%—%-{—@(mf’)
14 2)~ 1+ ax+ a(c;!—l)ngr &(a_lg)!(a_mm3+(’)(z4)
Vitz 142 -2 420 Ozt

8.5 Weitere Integrale & Ableitungen

F(x) | f(@)
%ln|az+b\ 7@.@1-&-17
azx ad—bc a(cx+d)—c(az+b
= dciQ: In |cx 4 d| %
2 f(2) + % Inf + £()] VT T
2 o
Sf(z) - ‘;7 arcsm(m) a? — z2
2 f(2) — Ll + f()] oo

In(z + V22 £+ a?)
arcsin(‘%‘)

% -arctan(%)

1

Vx2+a?
1
a
1

Va2 —z2

z2+4a?
7é cos(ax + b) sin(az + b)
% sin(az + b) cos(az + b)
z* z% - (1 +In|z|)
()" (z7)*(x + 2z In |z[)
o) (=) (x4 In|z| - 2% (1 + In|z|)
%(x - % sin(2x)) sin(x)?
%(:p + % sin(2z)) cos(z)?

10

8.6 Grenzwerte: Folgen

limg 00 £ =0

limg oo 1+ 1 =1

limy 00 ¥ = 00

limg o e® =0

limgy oo e™ % = limg s e % =00
T
limg— 00 ;—m = 00 limg s — oo Te® =

limg— o0 In(z) = 00

limg 0 In(z) = —oc0

T

limzsoo(l+z)z =1

limg—0(1 + x)% =e

lim, o0 (14 1)" =1

x

limg—oo (1+ )7 =1

limg— o0 2%¢% = 0, YO < g < 1

I
limy yoonn =1

- 1\T _ : _ L)y _1

limg 400 (1 + ;) =e limg 00 (1 L) = <

: k T km : sinz __

limg 400 (1+ p =e limg 0 =E=1

: 1 _ : cosz—1 __

limg_so @) = 1 limg, 0 === 0

limg_s0 bg% =-1 limg o zlogz =0

- 1— 1 - 71

limg 0 % = 3 limg 0 © > 1

- - — - — =z

limy 0 onr =1 limy o0 arctanz = 7

: T i —k : e’—1

limg 0o 7E EXC limg; 0 — = 1

. T __ . aT _

limg_o & - 1= In(a) Va > 0 limg 0 £ — 1—g

. In(z+1 . In(z

limg;_s0 % =1 limg,_yq Iif =1

- T - I

limz— oo niz) =0 limg 00 Oiz(ll) =0

limg 500 ¥z =1 limg 00 2% =0

lim - tanx = 400 lim 4 tanz = —oo0
T T T

limy—s 00 % =0 lim, 4+ 2lnz =0

8.7 Grenzwerte: Reihen

Zn . n(n+1)
i=1'= 2

Z?zl P2 = n(n+1)6(2n+1)

n 3 _ n’(ntD)? co 1 _ x2

i=1Y = 1 i=1 2 6

oo 1 _ oo i 11
it nnil) 1 212 T2
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