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1 Grundlagen

Axiome der reelen Zahlen

R ist ein kommutativer, angeordneter & ordnungsvollständiger
Körper. Ordnungsvollständigkeit unterscheidet R von Q.

A1 ∀x, y, z ∈ R x+ (y + z) = (x+ y) + z

A2 ∀x ∈ R x+ 0 = x

A3 ∀x ∈ R ∃y ∈ R x+ y = 0

A4 ∀x, z ∈ R x+ z = z + x

M1 ∀x, y, z ∈ R x · (y · z) = (x · y) · z
M2 ∀x ∈ R x · 1 = x

M3 ∀x ̸= 0 ∈ R∃y ∈ R x · y = 1

M4 ∀x, z ∈ R x · z = z · x
D ∀x, y, z ∈ R x · (y + z) = x · y + x · z
O1 ∀x ∈ R x ≤ x

O2 ∀x, y, z ∈ R x ≤ y ∧ y ≤ z =⇒ x ≤ z

O3 ∀x, y ∈ R x ≤ y ∧ y ≤ x =⇒ x = y

O4 ∀x, y ∈ R x ≤ y ∨ y ≤ x (Total)

K1 ∀x, y, z ∈ R x ≤ y =⇒ x+ z ≤ y + z

K2 ∀x ≥ 0, y ≥ 0 ∈ R x · y ≥ 0

Ordnungsvollständigkeit
∀A,B ̸= ∅ ⊆ R s.d. ∀a ∈ A, b ∈ B (a ≤ b) :
∃c ∈ R : ∀a ∈ A ∀b ∈ B (a ≤ c ∧ c ≤ b)

Archimedisches Prinzip
∀x > 0, y ∈ R ∃n ∈ N : (y ≤ n · x)

Absolutbetrag

Def: ∀x ∈ R |x| := max{x,−x}
(i) ∀x ∈ R |x| ≥ 0

(ii) ∀x, y ∈ R |xy| = |x| |y|
(iii) ∀x, y ∈ R |x+ y| ≤ |x|+ |y|
(iv) ∀x, y ∈ R |x+ y| ≥ |x| − |y|

Young’sche Ungleichung
∀ϵ > 0 ∀x, y ∈ R : 2|xy| ≤ ϵx2 + 1

ϵ y
2

Bernoulli Ungleichung
∀n ∈ N, x > −1 (1 + x)n ≥ 1 + n · x

Infimum & Supremum

Für A ⊆ R:

supA :=

{
min{c ∈ R | ∀a ∈ A : a ≤ c}
+∞ falls oben unbeschr.

inf A :=

{
max{c ∈ R | ∀a ∈ A : c ≤ a}
−∞ falls unten unbeschr.

Monotonie
Für f : D → R, D ⊂ R, x, y ∈ D:

mon. wachsend
def.⇐⇒ x ≤ y =⇒ f(x) ≤ f(y)

str. mon. wachs.
def.⇐⇒ x < y =⇒ f(x) < f(y)

mon. fallend
def.⇐⇒ x ≥ y =⇒ f(x) ≥ f(y)

str. mon. fallend
def.⇐⇒ x < y =⇒ f(x) < f(y)

Intervalle
Untermengen von R.

offenes Intervall
def.⇐⇒ (a, b) = {x ∈ R | a < x < b}

geschl. Intervall
def.⇐⇒ [a, b] = {x ∈ R | a ≤ x ≤ b}

kompakt
def.⇐⇒ I = [a, b], a ≤ b

Länge L(I) :=

{
b− a ∃a, b : a ≤ b, [a, b] = I

+∞ else

Satz von Cauchy-Cantor
I1 ⊇ I2 ⊇ . . . ⊇ In ⊇ In+1 ⊇ . . . s.d. ∀i ≥ 1 : Ii kompakt.

L(I1) < +∞ =⇒
⋂
n≥1

In ̸= ∅

Injektivität & Surjektivität
Für eine Funktion f : X → Y :

Injektiv
def.⇐⇒ ∀a, b ∈ X : f(a) = f(b) =⇒ a = b

Surjektiv
def.⇐⇒ ∀y ∈ Y : ∃x ∈ X : f(x) = y

Quadratische Gleichungen
a, b, c ∈ R, a ̸= 0

x1,2 = −b±
√
b2−4·a·c
2·a D = b2 − 4 · a · c

Binomialkoeffizient
n, k ∈ N∗, n ≥ k(
n
k

)
:= n!

k!·(n−k)! (a+ b)n =
∑n

k=0

(
n
k

)
an−k · bk

2 Folgen

Folge (an)n≥1 a : N∗ → R
Teilfolge (al(n))l(n)≥1 l : N∗ → N∗ ∀n l(n) < l(n+ 1)

Limes

lim
n→∞

(an) := l ist eindeutig definiert, falls:

(i) ∀ϵ > 0 : {n ∈ N | an /∈ ]l−ϵ, l+ϵ[ } ist endlich
(ii) ∀ϵ > 0, ∃N ≥ 1 : |an − l| < ϵ, ∀n ≥ N

Konvergenz
(an)n≥1 ist konvergent, falls lim

n→∞
an existiert.

Konvergente Folgen sind immer beschränkt.
Nicht umgekehrt: (−1)n ist beschränkt, aber nicht konvergent.

Rechenregeln Limes
Für konvergente (an)n≥1, (bn)n≥1:

(i) lim
n→∞

(an + bn) = lim
n→∞

(an) + lim
n→∞

(bn)

(ii) lim
n→∞

(an · bn) = lim
n→∞

(an) · lim
n→∞

(bn)

(iii) lim
n→∞

(an

bn
) = lim

n→∞
(an) \ lim

n→∞
(bn)

wobei ∀n ≥ 1(bn ̸= 0) ∧ lim
n→∞

(bn) ̸= 0

(iv) ∃K ∀n ≥ K(an ≤ bn) =⇒ lim
n→∞

(an) ≤ lim
n→∞

(bn)

Limes Inferior & Limes Superior

Für (an)n≥1 beschränkt:
bn := inf{ak | k ≥ n} cn := sup{ak | k ≥ n}

lim inf
n→∞

(an) := lim
n→∞

(bn)

lim sup
n→∞

(an) := lim
n→∞

(cn)

∀n ∈ N(bn ≤ cn) =⇒ lim inf
n→∞

(an) ≤ lim sup
n→∞

(an)

Komplement-Trick
Nützlich für einige Grenzwerte:

√
ax+ b−

√
cx+ d =

ax+ b− (cx+ d)√
ax+ b+

√
cx+ d
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Komplexe Folgen
(bn)n≥1 ∈ R, (an)n≥1 ∈ C

In C gelten die selben Resultate, aber:

(i) ∀n ∈ N : |an| ≤ bn ∧ lim
n→∞

(bn) = 0 ⇒ lim
n→∞

(an) = 0

(ii) lim inf(an) und lim sup(an) existieren nicht.

(an)n≥1 ∈ C konv. ⇐⇒ (ℜ(an))n≥1, (ℑ(an))n≥1 konv.

2.1 Konvergenzkriterien

Monotoner Konvergenz-Satz

(an)n≥1 mon. fallend, (bn)n≥1 mon. steigend:

an unten beschr: =⇒ lim
n→∞

(an) = inf{an | n ≥ 1}

bn oben beschr: =⇒ lim
n→∞

(bn) = sup{bn | n ≥ 1}

Sandwich-Satz

(an), (bn), (cn) s.d. ∀n ∈ N : an ≤ bn ≤ cn

lim
n→∞

(an) = lim
n→∞

(cn) = A =⇒ lim
n→∞

(bn) = A

Cauchy Kriterium I
(an)n≥1 beschr. ∧ lim inf

n→∞
(an) = lim sup

n→∞
(an)

Cauchy Kriterium II
∀ϵ > 0 ∃N ≥ 1 : |an − am| < ϵ ∀n,m ≥ N

Bolzano-Weierstrass
(an)n≥1 beschr. =⇒ Ex existiert konv. Teilfolge (bn)n≥1

lim inf
n→∞

(an) ≤ lim
n→∞

(bn) ≤ lim sup
n→∞

(an)

3 Reihen

Reihe (Sn)n≥1 s.d. Sn :=
∑n

k=1 ak

Konvergenz
∑∞

k=0 ak := lim
n→∞

∑n
k=0 ak

Absolute Konvergenz∑∞
k=1 |ak| konv. =⇒

∑∞
k=1 ak konv.

∀(ak)k≥1 : |
∑∞

k=1 ak| ≤
∑∞

k=1 |ak|

Rechenregeln
Für konvergente Reihen

∑∞
k=1 ak,

∑∞
j=1 bj , α ∈ R:

(i)
∑∞

k=1(ak + bk) = (
∑∞

n=0 ak) + (
∑∞

j=1 bj)

(ii)
∑∞

k=1(α · ak) = α · (
∑∞

k=1 ak)

Konvergente Reihen sind Nullfolgen∑∞
n=0 an konv =⇒ lim

n→∞
an = 0

Nicht umgekehrt:
∑∞

n=0
1
n

divergiert, obwohl lim
n→∞

1
n

= 0.

Doppelfolge (ai,j)i,j≥1

Doppelreihe
∑∞

i=0(
∑∞

j=0 ai,j),
∑∞

j=0(
∑∞

i=0 ai,j)
Die beiden Grenzwerte können verschieden sein.

Cauchy

∃B ≥ 0 :
∑m

i=0

∑m
j=0 |ai,j | ≤ B ∀m ≥ 0

=⇒ Si :=
∑∞

j=0 aij und Uj :=
∑∞

i=0 ai,j konv. abs.∑∞
i=0 Si = L1 und

∑∞
j=0 Uj = L2 konv. abs. s.d. L1 = L2.

Jede Anordnung σ : N → N×N s.d. bk := aσ(k) konv. abs.

Cauchy Produkt∑∞
n=0(

∑n
j=0 an−j · bj)

= aob0 + (aob1 + a1b0) + (a0b2 + a1b1 + a2b0) + . . .

3.1 Konvergenzkriterien

Vergleichssatz

Für
∑∞

k=1 ak,
∑∞

k=1 bk mit ∀k ≥ 1 (0 ≤ ak ≤ bk)
oder ∃K ≥ 1 (0 ≤ ak ≤ bk) ∀k ≥ K∑∞

k=1 bk konv. =⇒
∑∞

k=1 ak konv.∑∞
k=1 ak div. =⇒

∑∞
k=1 bk div.

Cauchy Kriterium
∀ϵ > 0 ∃N ≥ 1 |

∑m
k=n ak| < ϵ ∀m ≥ n ≥ N

Monotoner Konvergenz-Satz
∀k ∈ N∗(ak ≥ 0) konv. ⇐⇒

∑n
k=1 ak oben beschränkt

Leibniz
Für (an)n≥1 mon. fall. und ∀n(an ≥ 0), lim

n→∞
an = 0:∑∞

k=1(−1)k+1ak konv.

Dirichlet∑∞
k=1 ak abs. konv.

=⇒ ∀ϕ : N∗ → N∗ (bijektiv) :
∑∞

k=1 aϕ(k) abs. konv.∑∞
k=1 ak =

∑∞
k=1 aϕ(k), unabh. von ϕ.

Quotientenkriterium

lim sup
n→∞

|an+1|
|an| < 1 =⇒

∑∞
n=0 an abs. konv.

lim sup
n→∞

|an+1|
|an| > 1 =⇒

∑∞
n=0 an div.

Wobei (an)n≥1 mit ∀n(an ̸= 0)

Wurzelkriterium

lim sup
n→∞

|an|
1
n < 1 =⇒

∑∞
n=0 an abs. konv.

lim sup
n→∞

|an|
1
n > 1 =⇒

∑∞
n=0 an div.

Beide Kriterien geben keine Aussage bei genau 0.

3.2 Fundamentalreihen

Potenzreihen (Konvergenzradius)∑∞
k=1 ckz

k abs. konv. ⇐= |z| < ρ∑∞
k=1 ckz

k div. ⇐= |z| > ρ

ρ =

 +∞, lim sup
n→∞

|ck|
1
k = 0

(lim sup
n→∞

|ck|
1
k )−1, lim sup

n→∞
|ck|

1
k > 0

Geometrische Reihe∑∞
n=0 q

n = 1
1−q ⇐⇒ |q| < 1

Harmonische Reihe∑∞
n=1

1
n = ∞

Zeta Funktion
ζ(s) =

∑∞
n=1

1
ns konv. ⇐⇒ s > 1

Exponentialfunktion
exp(z) :=

∑∞
n=0

zn

n! = ez konv. ∀z ∈ C
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4 Stetige Funktionen

D ⊂ R, x0 ∈ D, f, g : D → R, λ ∈ R

Stetigkeit

f stetg in x0
def.⇐⇒ ∀ϵ > 0,∃δ > 0 : ∀x ∈ D :

|x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ

f stetig
def.⇐⇒ ∀x ∈ D : f stetig in x

Stetigkeit durch Folgen

f stetig in x0 ⇐⇒ ∀(an)n≥1 ∈ D :
lim
n→∞

an = x0 =⇒ lim
n→∞

f(an) = f(x0)

Rechenregeln
Für f, g stetig in x0:

(i) f + g, λ · f, f · g
(ii) g(x0) ̸= 0 =⇒ f

g : {x ∈ D | g(x) ̸= 0} → R

sind stetig in x0.

4.1 Theoreme

Zwischenwertsatz

∀c ∈ R : f(a) ≤ c ≤ f(b)
=⇒ ∃z ∈ I : a ≤ z ≤ b ∧ f(z) = c
I ⊂ R (Intervall), f : I → R (stetig), a, b ∈ I

Polynom-Nullstellen
Für alle P : R → R, P (x) = anxn + . . .+ a0 :

an ̸= 0 ∧ n ≡2 1 =⇒ ∃x ∈ R : P (x) = 0

Min-Max-Satz

Stetige f sind auf I immer beschränkt.
∃u, v ∈ I : f(u) ≤ f(x) ≤ f(v) ∀x ∈ I
f : I = [a, b] → R, f stetig auf I, I ist kompakt

Stetigkeit in Kompositionen
D1, D2 ⊂ R, f : D1 → D2, g : D2 → R
f, g stetig in x0, f(x0) =⇒ g ◦ f : D1 → R in x0 stetig.
f, g stetig =⇒ g ◦ f : D1 → R stetig

Stetigkeit der Umkehrabbildung
I = [a, b] ⊂ R ist ein Intervall

f : I → R stetig, str. mon.
=⇒ f−1 : f(I) ⊂ R → I stetig, str. mon.
& f(I) = [f(a), f(b)] ist ein Intervall.

4.2 Funktionenfolgen

Funktionenfolge (fn)n≥1

Formal: eine Abbildung N → RD s.d. n 7→ f(n) =: fn

Punktweise Konvergenz
(fn)n≥1 konv. pw. gegen f : D → R, wenn:
∀x ∈ D : f(x) = lim

n→∞
fn(x)

f muss nicht stetig sein, auch wenn ∀n ∈ N : fn stetig.

Gleichmässige Konvergenz

(fn)n≥1 konv. glm. gegen f : D → R, wenn:
∀ϵ > 0,∃N ≥ 1 : ∀n ≥ N, ∀x ∈ D : |fn(x)−f(x)| < ϵ

Wobei N nur von ϵ abh. (nicht von x).
fn glm. konv. =⇒ fn pw. konv.

Altenative Definition für gleichmässige Konvergenz
lim

n→∞
sup
x∈D

|fn(x)− f(x)| = 0 ⇐⇒ fn glm. konv. gegen f .

Gleichmässige Konvergenz ist stetig
D ⊂ R, fn : D → R, f : D → R
∀n ∈ N : fn stetig in D, glm. konv. gegen f
=⇒ f auch stetig in D.

Es folgt: f nicht stetig =⇒ fn nicht glm. konv.

Cauchy Kriterium
fn : D → R konv. glm. in D, wenn:
∀ϵ > 0,∃N ≥ 1 : ∀n,m ≥ N, ∀x ∈ D : |fn(x)−fm(x)| < ϵ

Limes-Funktion stetiger glm. konv. Folgen
fn : D → R glm. konv. Folge stetiger Funktionen.
=⇒ f(x) := lim

n→∞
fn(x) ist stetig.

Glm. Konvergenz von Funktionenreihen∑∞
k=0 fk(x) konv. glm. in D, falls:

Sn(x) :=
∑n

k=0 fk(x) glm. konv. ist.

Vergleichssatz für stetige Funk.-Reihen
D ⊂ R, fn : D → R, alle fn stetig

∀x ∈ D : |fn(x)| ≤ cn für (cn)n≥1 s.d.
∑∞

n=0 cn konv.
=⇒

∑∞
n=0 fn(x) konv., f(x) :=

∑∞
n=0 fn(x) stetig in D.

Potenzreihen∑∞
k=0 ckx

k s.d. ρ > 0, f(x) :=
∑∞

k=0 ckx
k, |x| < ρ

=⇒ ∀0 ≤ r < ρ :
∑∞

k=0 ckx
k konv. glm. in [−r, r]

& f : (−ρ, ρ) → R ist stetig.

4.3 Grenzwerte von Funktionen

D ⊂ R, f, g : D → R. x0 ∈ R ist Häufungspunkt für D

Häufungspunkt
x0 ∈ R ist ein Häufungspunkt in D, falls:
∀δ > 0 : ( (x0 − δ, x0 + δ) \ { x0} ) ∩D ̸= ∅
Man kann (in D) beliebig nah zu x0, wobei x0 /∈ D möglich.

Grenzwert für Funktionen
lim

x→x0

f(x) = L, wenn für L gilt:

∀ϵ > 0,∃δ > 0 :
∀x ∈ D ∩ ( (x0 − δ, x0 + δ) \ { x0} ) : |f(x)− L| < ϵ

Grenzwert durch Folgen
lim

x→x0

f(x) = L gdw.

∀(an)n≥1 in D \ {x0} s.d. lim
n→∞

an = x0 : lim
x→x0

f(an) = L

Stetigkeit durch Grenzwert
f stetig in x0 ∈ D ⇐⇒ lim

x→x0

f(x) = f(x0)

Rechenregeln
Wenn lim

x→x0

f(x), lim
x→x0

g(x) exisieren:

lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + lim
x→x0

g(x)

lim
x→x0

(f · g)(x) = lim
x→x0

f(x) · lim
x→x0

g(x)

Grenzwerte abschätzen
f ≤ g =⇒ lim

x→x0

f(x) ≤ lim
x→x0

g(x) falls existent

Sandwich bei Funktionen
g1 ≤ f ≤ g2 ∧ lim

x→x0

g1(x) = lim
x→x0

g2(x)

=⇒ lim
x→x0

f(x) existiert: lim
x→x0

f(x) = lim
x→x0

g1(x)
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Komposition und Grenzwert
Hier: D,E ⊂ R, x0 Hf.-P. in D, f : D → E, g : E → R
lim

x→x0

g(f(x)) = g( lim
x→x0

f(x)), falls g stetig in lim
x→x0

f(x)

5 Differenzierbare Funktionen

Differenzierbarkeit

f diff.-bar in x0
def.⇐⇒ lim

x→x0

f(x)−f(x0)
x−x0

existiert.

f diff.-bar in D
def.⇐⇒ ∀x0 ∈ D : f in x0 diff.-bar.

f ′(x) := lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0

D ⊂ R, f, g : D → R, x0 Häufungspunkt von D

Weierstrass
f diff.-bar in x0 ⇐⇒ ∃c ∈ R, r : D → R :
f(x) = f(x0) + c(x− x0) + r(x)(x− x0)
r(x0) = 0 und r stetig in x0

Weitere Bedingung
f in x0 diff.-bar ⇐⇒ ∃ϕ : D → R, ϕ stetig in x0 s.d.
∀x ∈ D : f(x) = f(x0)+ϕ(x)(x−x0), ϕ(x0) = f ′(x0)

Differenzierbarkeit impliziert Stetigkeit
f diff.-bar (in x0) =⇒ f stetig (in x0) =⇒ f integr.
Nicht umgekehrt: f(x) = |x| ist stetig, aber nicht diff.-bar.

Rechenregeln

(i) (f + g)(x0) = f ′(x0) + g′(x0)

(ii) (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

(iii) ( fg )
′(x0) = f ′(x0)g(x0)−f(x0)g

′(x0)
g(x0)2

f, g in x0 diff.-bar, (iii) : g(x0) ̸= 0

Kompositionen
D,E ⊂ R, x0 ∈ D ist H.-P. in D, f(x0) ist H.-P. in E

f : D → E diff.-bar in x0, g : E → R diff.-bar in f(x0)

g ◦ f : D → R diff.-bar in x0:
(g ◦ f)′(x0) = g′(f(x0))f

′(x0)

Ableitung der Umkehrabbildung

y0 ist Häufungspunkt in E, f−1 in f(x0) diff.-bar und:

(f−1)′(f(x0)) =
1

f ′(x0)

f : D → E ist bijektiv, x0 ∈ D ist H.-P.,

f diff.-bar in x0, f−1 in f(x0) stetig.

5.1 Erste Ableitung

Spezielle Punkte: Lokale Extrema
D ⊂ R, f : D → R, x0 ∈ D

x0 lokales Minimum, wenn:
∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩D : f(x) ≤ f(x0)
x0 lokales Maximum, wenn:
∃δ > 0, ∀x ∈ (x0 − δ, x0 + δ) ∩D : f(x) ≥ f(x0)

Sattelpunkte & Wendepunkte sind keine Extrema.

Lokale Extrema durch Ableitung
f : (a, b) → R, x0 ∈ (a, b), f in x0 diff.-bar

Falls x0 ein lok. Extremum ist: f ′(x0) = 0.

f ′(x0) > 0 =⇒ ∃δ > 0 :
f(x) > f(x0) ∀x ∈ (x0, x0 + δ),
f(x) < f(x0) ∀x ∈ (x0 − δ, x0)

f ′(x0) < 0 =⇒ ∃δ > 0 :
f(x) < f(x0) ∀x ∈ (x0, x0 + δ),
f(x) > f(x0) ∀x ∈ (x0 − δ, x0)

Verhalten von f mittels f ′

f, g : [a, b] → R stetig, in (a, b) diff.-bar

∀ξ ∈ (a, b) : . . .
f ′(ξ) = 0 =⇒ f ist konstant
f ′(ξ) = g′(ξ) =⇒ ∃c ∈ R : f(x) = g(x) + c ∀x ∈ [a, b]
f ′(ξ) ≥ 0 =⇒ f auf [a, b] mon. wachsend.
f ′(ξ) > 0 =⇒ f auf [a, b] str. mon. wachsend.
f ′(ξ) ≤ 0 =⇒ f auf [a, b] mon. fallend.
f ′(ξ) < 0 =⇒ f auf [a, b] str. mon. fallend.

∃M ≥ 0 : |f ′(ξ)| ≤ M ∀ξ ∈ (a, b)
=⇒ ∀x1, x2 ∈ [a, b] : |f(x1)− f(x2)| ≤ M |x1 − x2|

5.2 Höhere Ableitungen

Definitionen: Höhere Ableitungen
D ⊂ R, f : D → R diff.-bar in D, jedes x0 ∈ D ist H.P. von D,

f (1) := f ′, n ≥ 2

f ist n-mal diff.-bar in D
def.⇐⇒ f (n−1) in D diff.-bar.

f (n) := (fn−1)′ die n-te Ableitung von f .

f ist n-mal stetig diff.-bar in D
def.⇐⇒ fn stetig in D

f ist glatt
def.⇐⇒ ∀n ≥ 1 f ist n-mal diff.-bar.

Stetigkeit tieferer Ableitungen
f n-mal diff.-bar ⇐⇒ f n− 1-mal stetig diff.-bar

Rechenregeln
D ⊂ R, n ≥ 1, f, g : D → R n-mal diff.-bar in D

(i) (f + g)(n) = f (n) + g(n)

(ii) (f · g)(n) =
∑n

k=1

(
n
k

)
f (k)g(n−k)

(iii) ∀x ∈ D : g(x) ̸= 0 =⇒ f
g in D n-mal diff.-bar

Komposition höherer Ableitungen
E,D ⊂ R s.d. alle x0 ∈ E,D H.-P. sind,

f : D → E, g : E → R, f, g n-mal diff.-bar

g ◦ f ist n-mal diff.-bar.

(f ◦ g)(n)(x) =
∑k

k=1 An,k(x)(g
(k) ◦ f)(x)

An,k ist ein Polynom in f ′, f (2), . . . , f (n+1−k).

Extrema mehrfach differenzierbarer f
n ≥ 0, a < x0 < b, f : [a, b] → R in (a, b) (n+ 1)-mal diff.-bar

Wenn: f ′(x0) = f (2)(x0) = . . . = f (n)(x0) = 0:

n ≡2 0, x0 lokales Extremum =⇒ f (n+1)(x0) = 0
n ≡2 1, f (n+1)(x0) > 0 =⇒ x0 str. lokales Minimum
n ≡2 1, f (n+1)(x0) < 0 =⇒ x0 str. lokales Maximum

Extrema zweimal differenzierbarer f
f : [a, b] → R, stetig, 2-mal diff.-bar in (a, b)

a < x0 < b, f ′(x0) = 0, dann:

f (2)(x0) > 0 =⇒ x0 str. lokales Minimum
f (2)(x0) < 0 =⇒ x0 str. lokales Maximum
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5.3 Wichtige Theoreme

Satz von Rolle
f : (a, b) → R stetig, f diff.-bar in (a, b)

f(a) = f(b) =⇒ ∃ξ ∈ (a, b) : f ′(ξ) = 0

Satz von Lagrange

f : (a.b) ⊂ R → R in (a, b) diff.-bar:

∃ξ ∈ (a, b) : f(b)− f(a) = f ′(ξ)(b− a)

Satz von Cauchy
f, g : [a, b] → R stetig, in (a, b) diff.-bar

∃ξ ∈ (a, b) : g′(ξ)(f(b)− f(a)) = f ′(ξ)(g(b)− g(a))

Falls ∀x ∈ (a, b), g′(x) ̸= 0 :

=⇒ g(a) ̸= g(b), f(b)−f(a)
g(b)−g(a) = f ′(ξ)

g′(ξ)

Satz von L’Hôpital

Falls: lim
x→b−

f(x) = 0, lim
x→b−

= 0, lim
x→b−

f ′(x)
g′(x) existiert:

lim
x→b−

f(x)

g(x)
= lim

x→b−

f ′(x)

g′(x)

Auch falls: b = +∞, lim
x→b−

f ′(x)
g′(x) = +∞, x → a+

f, g : (a, b) → R diff.-bar in (a, b), g′(x) ̸= 0 ∀x ∈ (a, b)

5.4 Konvexe/Konkave Funktionen

Definition: Konvex
I ⊂ R ist ein beliebiges Intervall, f : I → R
f konvex auf I, falls: ∀x ≤ y ∈ I, ∀λ ∈ [0, 1] :

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

f str. konvex auf I, falls: ∀x < y ∈ I, ∀λ ∈ (0, 1) :
f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

Summe konvexer Funktionen ist konvex
f : I → R, f konvex, n ≥ 1, { x1, . . . , xn} ⊂ R,
λ1, . . . , λn ∈ [0, 1],

∑n
i=1 λi = 1

f(
∑n

i=1 λixi) ≤
∑n

i=1 λif(xi)

Bedingungen für Konvexität
f : I → R, f beliebig

f (str.) konvex ⇐⇒ ∀x0 < x < x1 ∈ I :
f(x)−f(x0)

x−x0
≤ / < f(x1)−f(x)

x1−x

f : (a, b) → R, f diff.-bar in (a, b)

f (str.) konvex ⇐⇒ f ′ (str.) mon. wachsend.

f : (a, b) → R, f 2 mal diff.-bar in (a, b)

f (str.) konvex ⇐⇒ f ′′ ≥ 0 (bzw. f ′′ > 0) auf (a, b).

5.5 Potenzreihen & Taylorpolynome

Gleichmässige konvergenz erhält Differenzierbarkeit
fn : (a, b) → R ist Funktionenfolge,

fn einmal in (a, b) diff.-bar ∀n ≥ 1

(fn)n≥1 und (f ′
n)n≥1 glm. konv. in (a, b).

=⇒ f := lim
n→∞

fn ist stetig diff.-bar s.d. f ′ = lim
n→∞

f ′
n

Potenzreihen sind differenzierbar∑∞
k=1 ckx

k ist Potenzreihe, s.d. ρ > 0

f(x) =
∑∞

k=1 ck(x− x0)
k ist auf (x0 − ρ, x0 + ρ) diff.-bar.

f ′(x) =
∑∞

k=1 k · ck(x− x0)
k−1 ∀x ∈ (x0 − ρ, x0 + ρ)

Potenzreihen sind glatt
f(x) =

∑∞
k=1 ck(x− x0)

k ist glatt auf (x0 − ρ, x0 + ρ)

f (j)(x) =
∑∞

k=j ck
k!

(k−j)! (x− x0)
k−j , wobei cj =

f(j)(x0)
j!

Approximation glatter f durch Polynome
f : [a, b] → R stetig, (n+ 1)-mal diff.-bar in (a, b)

∀a < x ≤ b, ∃ξ ∈ (a, x) :

f(x) =
∑n

k=0
f(k)(a)

k! (x− a)k + f(n+1)(ξ)
(n+1)! (x− a)n+1

Taylor Approximation

a ∈ R s.d. c < a < d, ∀x ∈ [c, d], ∃ξ ∈ (x, a) :

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k︸ ︷︷ ︸

=: Tn

+
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1︸ ︷︷ ︸

=: Rn

Wobei: ∀m ≥ 1 ∃n ≥ 1 : f (m)(x0) = T
(m)
n (x0)

Rn wird als Fehlerabschätzung um a genutzt.

f : [c, d] → R stetig, (n+ 1) mal diff.-bar in (c, d)

Taylor-Approximation bei nahen Punkten
Die Taylor-Approximation bezieht sich wirklich nur auf x = a. Beispiel:

f(x) =

{
0 x = 0

exp(− 1
x2 ) x ̸= 0

Wenn a = 0 ist Tn(x) = 0 ∀x ∈ R ∀n ≥ 1.
Aber lim

x→∞
f(x) = lim

x→−∞
f(x) = 1 konvergiert sehr schnell.
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6 Das Riemann Integral

a, b ∈ R, a < b, I = [a, b]

Partition von I: P ⊊ [a, b], {a, b} ⊂ P, P endlich
Verfeinerung von P : Partition P ′ s.d. P ′ ⊂ P
Partitionenmenge von I: P(I) := {P | P ist Partition von I}

Für alle P1, P2 vom selben I = [a, b] gilt:
P1 ∪ P2 ist auch eine Partition von I
∃P ′ ⊊ I : P ′ ⊂ P1 ∧ P ′ ⊂ P2

Ober- und Untersummen
f : [a, b] → R ist beschränkt, P ⊊ [a, b] ist Partition von [a, b]

M ∈ R : M ≥ 0 ∧ |f(x)| ≤ M ∀x ∈ [a, b]

δi := xi − xi−1 für P = {x0, . . . , xn}

s(f, P ) :=
∑n

i=1 fiδi, fi = inf
xi−1≤x≤xi

f(x)

S(f, P ) :=
∑n

i=1 Fiδi, Fi = sup
xi−1≤x≤xi

f(x)

Für beliebige Partitionen P1, P2: s(f, P1) ≤ S(f, P2)

s(f) := sup
P∈P(I)

s(f, P ), S(f) := inf
P∈P(I)

S(f, P )

s(f) ≤ S(f)

6.1 Riemann-Integrierbarkeit

Riemann-Integrierbarkeit

f : [a, b] → R (beschr.) ist integrierbar
def.⇐⇒ s(f) = S(f)∫ b

a

f(x) dx := s(f) = S(f)

Integrierbarkeit durch Ober-/Untersummen
f : [a, b] → R (beschr.) ist integrierbar
⇐⇒ ∀ϵ > 0, ∃P ∈ P(I) : S(f, P )− s(f, P ) < ϵ

Integrierbarkeit als Grenzwert
Sei Pδ(I) := {Partitionen P ⊊ [a, b] | max

1≤i≤n
δi ≤ δ}

f : [a, b] → R (beschr.) ist integrierbar
⇐⇒ ∀ϵ > 0, ∃δ > 0 : ∀P ∈ Pδ(I) : S(f, P )−s(f, P ) < ϵ

Polynombrüche sind Integrierbar, ohne Nullstellen
P,Q : R → R sind Polynome

¬∃x ∈ [a, b] : Q(x) = 0 =⇒ P
Q : [a, b] → R ist integr.

Stetige Funktionen sind integrierbar
f : [a, b] → R stetig =⇒ f ist integrierbar.
Nicht umgekehrt: Treppenfunktionen sind integr., aber nicht stetig.

Monotone Funktionen sind integrierbar
f : [a, b] → R monoton =⇒ f ist integrierbar.

Operationen erhalten Integrierbarkeit
f, g : [a, b] → R beschr. und intgrierbar, λ ∈ R
f + g, λ · f, f · g, |f |, min(f, g), max(f, g), f

g

sind integrierbar. (Für f
g : |g(x)| > 0)

Konstanten und Addition

I kompakt, f1, f2 : I → R beschr. integr., λ1, λ2 ∈ R∫ b

a

λ1f1(x)+λ2f2(x) dx = λ1

∫ b

a

f1(x) dx+λ2

∫ b

a

f2(x) dx

Gleichmässige Stetigkeit
D ⊂ R, f : D → R

f in D glm. stetig
def.⇐⇒ ∀ϵ > 0, ∃δ > 0 ∀x, y ∈ D :

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ

Gleichmässige Stetigkeit auf kompakten Intervallen
f : [a, b] → R
f Stetig auf kompaktem [a, b] =⇒ f glm. stetig auf [a, b]

Integrale erhalten Monotonie
f, g : [a, b] → R beschr. integr.

∀x ∈ [a, b] : f(x) ≤ g(x) =⇒
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

|
∫ b

a
f(x) dx| ≤

∫ b

a
|f(x)| dx

6.2 Wichtige Theoreme

Cauchy-Schwarz

f, g : [a, b] → R beschr. integr.

∫ b

a

|f(x)g(x) dx| ≤

√∫ b

a

f2(x) dx ·

√∫ b

a

g2(x) dx

Mittelwertsatz bei Integralen
f : [a, b] → R stetig

∃ξ ∈ [a, b] :
∫ b

a
f(x) dx = f(ξ)(b− a)

Konseqzenz des Mittelwertsatz für Integrale
f, g : [a, b] → R, f stetig, g beschr. integr.

∀x ∈ [a, b] : g(x) ≥ 0

=⇒ ∃ξ ∈ [a, b] :
∫ b

a
f(x)g(x) dx = f(ξ)

∫ b

a
g(x) dx

Integration ist die Umkehrfunktion der Ableitung
a < b, f : [a, b] → R stetig

F (x) : [a, b] → R, F (x) 7→
∫ x

a
f(x) dt,

ist in [a, b] stetig, diff.-bar und F ′(x) = f(x).

Stammfunktionen
a < b, f : [a, b] → R stetig

F : [a, b] → R ist Stammfunktion von f
def.⇐⇒ F stetig diff.-bar in [a, b] und F ′ = f in [a, b].

Fundamentalsatz der Differentialrechnung
f : [a, b] → R stetig

Die Stammfunktion F von f existiert s.d.∫ b

a
f(x) dx = F (b)− F (a)

Bogenlänge

L =
∫ b

a

√
1 + (f ′(x))2 dx
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6.3 Integrationsmethoden

Bei rationalen f : Polynomdivision & Partialbruchzerlegung.

Partielle Integration

a < b, f, g : [a, b] → R stetig diff.-bar∫
f(x) · g′(x) dx = f(x) · g(x)−

∫
f ′(x) · g(x) dx∫ b

a

f(x)g′(x) dx = f(b)g(b)−f(a)g(a)−
∫ b

a

f ′(x)g(x)

Substitution

a < b, ϕ : [a, b] → R stetig diff.-bar,

I ⊂ R, ϕ([a, b]) ⊂ I, f : I → R stetig∫ ϕ(b)

ϕ(a)

f(x) dx =

∫ b

a

f(ϕ(t)) · ϕ′(t) dt

Umgekehrte Kettenregel
f : [a, b] → R diff., g : [c, d] → R diff, [c, d] ⊆ f([a, b])∫
f ′(g(x) · g′(x) dx = f(g(x))

Umformungen
I ⊂ R, f : I → R
a, b, c ∈ R s.d. [a+ c, b+ c] ⊂ I

=⇒
∫ b+c

a+c
f(x) dx =

∫ b

a
f(t+ c) dt

a, b, c ∈ R s.d. c ̸= 0 und [ac, bc] ⊂ I

=⇒
∫ b

a
f(ct) dt = 1

c

∫ bc

ac
f(x) dx

6.4 Uneigentliche Integrale

Definition: Uneigentliche Integrale
f : [a,∞) → R beschr. integr auf [a, b] ∀b > a

Falls lim
b→∞

∫ b

a
f(x) dx existiert:∫∞

a
f(x) dx := lim

b→∞

∫ b

a
f(x) dx

Man sagt: f ist auf [a,∞) integrierbar.

Reihenkonvergenz über Integration
Sei f : [1,∞) → [0,∞) mon. fallend.∑∞

n=1 f(n) konv. ⇐⇒
∫∞
1

f(x) dx konv.

Integration von f : (a, b] → R
Integrierbar, falls lim

ϵ→0+

∫ b

a+ϵ
f(x) dx existiert.

Man schreibt dann:
∫ b

a
f(x) dx.

6.5 Konvergente Reihen

Integration konvergenter Folgen
fn : [a, b] → R Folge beschr. integr. f , glm. konv. zu f : [a, b] → R

f ist beschr. integr. und lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx

Integration konvergenter Reihen
fn : [a, b] → R Folge beschr. integr.

∑∞
n=0 fn, glm. konv. in [a, b]∑∞

n=0

∫ b

a
fn(x) dx =

∫ b

a
(
∑∞

n=0 fn(x)) dx

Integration von Potenzreihen
f(x) =

∑∞
n=0 ckx

k s.d. ρ > 0.

∀0 ≤ r < ρ : f auf [−r, r] integr. und
∀x ∈ (−ρ, ρ) :

∫ x

0
f(t) dt =

∑∞
n=0

cn

n+1x
n+1

6.6 Approximationsformeln

Bernoulli Polynome
Wir nutzen Polynome Pn, die erfüllen:

P ′
k = Pk−1, k ≥ 1 und

∫ 1

0
Pk(x) dx = 0 ∀k ≥ 1

Für die Bernoulli-Polynome Bk gilt: Bk(x) = k!Pk(x).

Bk ist rekursive definiert:
B0 = 1, Bk−1 =

∑k−1
i=0

(
k
i

)
Bi = 0

Bk Explizit:

Bk(x) =
∑

i=0

(
k
i

)
Bk

i x
k−i s.d.

∫ 1

0
Bk(x) dx = 0

Somit:
B0(x) = 1, B1(x) = x− 1

2 , B2(x) = x2 − x+ 1
6 , . . .

∼
Bk(x) =

{
Bk(x) ∀x : 0 ≤ x < 1

Bk(x− n) ∀x : n ≤ x < n+ 1

Euler-McLaurin Summationsformel
f : [0, n] → R k-mal stetig diff.-bar, k ≥ 1

Für k = 1 :∑n
i=1 f(i) =

∫ n

0
f(x) dx+ 1

2 (f(n)−f(0))+
∫ n

0

∼
B1(x)f

′(x) dx
Für k ≥ 2 :∑n

i=1 f(i) =
∫ n

0
f(x) dx+ 1

2 (f(n)− f(0))

+
∑k

j=2
(−1)jBj

j! (f (j−1)(n)− f (j−1)(0)) +
∼
Rk

s.d
∼
Rk = (−1)k−1

k!

∫ n

0

∼
Bk(x)f

(k)(x) dx

Stirling’sche Formel
Zur Approximation von n!

n! ≈
√
2πn·nn

en bzw. lim
n→∞

n!√
2πn·nn

en

= 1

Via Euler-McLaurin lässt sich präziser beweisen:

n! =
√
2πn·nn

en · exp( 1
12n +R3(n))

s.d. |R3(n)| ≤
√
3

216 · 1
n2 ∀n ≥ 1
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7 Spezifische Funktionen

7.1 Grundfunktionen

Potenzen
f : R → R : x 7→ xn

stetig und glatt ∀n ∈ N.
n ≡2 1 ⇐⇒ f str. monoton wachsend

Polynome
f : R → R : x 7→ anx

n + . . .+ a0

stetig und glatt.
deg(f) := max

0≤i≤n
{i ∈ N | ai ̸= 0}

Für poly. f, g ̸= 0, Nullstellen von g: x1, . . . , xm:
f
g : R \ {x1, . . . , xm} → R : x 7→ f(x)

g(x) ist stetig.

Betragsfunktion
f : R → R : x 7→ |x|

stetig, in x0 = 0 nicht diff.-bar.
g stetig =⇒ |g|(x) := |g(x)| stetig.

Abrundrungsfunktion
f : R → R : x 7→ ⌈x⌉ := max{m ∈ Z | m ≤ x}

f nicht stetig in x0 ⇐⇒ x0 ∈ Z
Für D = R \ Z ist ⌈x⌉ : D → R stetig.

Min.-/Max.-Funktionen
max(f, g)(x) := max(f(x), g(x))
min(f, g)(x) := min(f(x), g(x))

Sind f, g stetig, sind auch max(f, g),min(f, g) stetig.

7.2 Beweisfunktionen

Indikatorfunktion von Q

f(x) =

{
1 x ∈ Q
0 x /∈ Q

f : R → R

∀x ∈ R : nicht stetig, nicht integr. in x.

g(x) =

{
x x ∈ Q
1− x x /∈ Q

g : R → R

Ist nur in x = 1
2 stetig, sonst nirgends.

Van der Waerden Funktion
x ∈ R
Sei g(x) = min{|x−m| | m ∈ Z}.
D.h. g gibt die nächste ganze Zahl zu x aus.

f(x) =
∑∞

n=0
g(10nx)

10n

Die Reihe ist glm. konv. auf ganz R und f stetig.
f ist nirgendwo diff.-bar.

Glatte Funktion, ohne konv. Potenzreihe

f(x) =

{
exp(− 1

x2 ) x ̸= 0

0 x = 0

f ist glatt auf R s.d. ∀k ≥ 0 : f (k)(0) = 0.
Da f(x) > 0 ∀x ̸= 0 gibt es keine P.-Reihe mit pos. ρ.

Funktion mit nicht-stetiger Ableitung

f(x) =

{
x2 · sin( 1x ) x ̸= 0

0 x = 0

Wobei f ′ nicht stetig in x0 = 0.

7.3 Exponentialfunktion

Definition: Exponentialfunktion

∀z ∈ C : exp(z) konvergiert.

exp : C → C exp(z) :=

∞∑
n=0

zn

n!

Exponentialfunktion in R
exp : R → (0,+∞)

str. mon. wachs., stetig, surj. und glatt.

exp(x) > 0 ∀x ∈ R
exp(x) > 1 ∀x > 0

exp(x) ≥ 1 + x ∀x ∈ R
exp(x) · exp(y) = exp(x+ y) ∀x, y ∈ R

Natürlicher Logarithmus
exp−1 := ln : (0,+∞) → R

str. mon. wachs., stetig, bijektiv und glatt.

ln(a · b) = ln(a) + ln(b) ∀a, b ∈ (0,+∞)

Allgemeine Potenzen
xa : (0,+∞) → (0,+∞) := exp(a · ln(x))
x > 0, a ∈ R

a > 0 =⇒ stetig, bijektiv, str. mon. wachs.
a < 0 =⇒ stetig, bijektiv, str. mon. fall.

Potenzgesetze
∀a, b ∈ R, ∀x > 0 :

ln(xa) = a ln(x) xaxb = xa+b

(xa)b = xab x0 = 1
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7.4 Trigonometrische Funktionen

Definition: Trigonometrische Funktionen

∀z ∈ C : sin(z), cos(z) konv. abs.

sin(z) =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+

z5

5!
− . . .

cos(z) =

∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2!
+

z4

4!
− . . .

tan(z) = sin(z)
cos(z)

cot(z) = cos(z)
sin(z)

Trigonometrische Funktionen in R
sin, cos : R → R sind stetig und glatt.

π := inf{t > 0 | sin(t) = 0} ∈ (2, 4)

∀0 ≤ x ≤
√
6 : x ≥ sin(x) ≥ x− x3

3!

Nullstellen von sin in R: {k · π | k ∈ Z}

sin(x) > 0 ∀x ∈ (2kπ, (2k + 1)π)
sin(x) < 0 ∀x ∈ ((2k + 1)π, (2k + 2)π)

Nullstellen von cos in R: {π
2 + kπ | k ∈ Z} :

cos(x) > 0 ∀x ∈ (−π
2 + 2kπ,−π

2 + (2k + 1)π)
cos(x) < 0 ∀x ∈ (−π

2 + (2k + 1)π,−π
2 + (2k + 2)π)

Hyperbelfunktionen

cosh(x) : R → [1,∞] := ex+e−x

2

sinh(x) : R → R := ex−e−x

2

tanh(x) : R → [−1, 1] := sinh(x)
cosh(x) =

ex−e−x

ex+e−x

sinh, cosh, tanh sind glatt.

8 Tabellen

Credits: Einige Tabellen von D. Camenisch & J. Steinmann

8.1 Trigonometrische Identitäten

Trigonometrische Identitäten in C

eiz = cos(z) + i sin(z)

cos(z)2 + sin(z)2 = 1

sin(z) = eiz−e−iz

2i

cos(z) = eiz+e−iz

2

sin(z + w) = sin(z) cos(w) + cos(z) sin(w)

cos(z + w) = cos(z) cos(w) + sin(z) sin(w)

sin(2z) = 2 sin(z) cos(z)

cos(2z) = cos(z)2 − sin(z)2

eiπ = −1, e2iπ = 1, e
iπ
2 = i

sin(z) = eiz−e−iz

2
kann hilfreich sein um sin(z)n um zuschreiben.

Trigonometrische Identitäten in R

sin(−x) = − sin(x)

cos(−x) = cos(x)

tan(−x) = − tan(x)

sin(x+ π
2 ) = cos(x)

cos(x+ π
2 ) = − sin(x)

sin(x+ π) = cos(x)

sin(x+ 2π) = sin(x)

sin(x)2 = 1
2 (1− cos(2x))

cos(x)2 = 1
2 (1 + cos(2x))

sin(arctan(x)) = x√
x2+1

cos(arctan(x)) = 1√
x2+1

sin(x) = tan(x)√
1+tan(x)2

cos(x) = 1√
1+tan(x)2

8.2 Trigonometrische Funktionen: Werte

Funktionswerte am Winkelkreis

Trigonometrische Analogien

−
α

9
0
◦
−
α

9
0
◦
+
α

1
8
0
◦
−
α

1
8
0
◦
+
α

k
∗
3
6
0
◦
−
α

k
∗
3
6
0
◦
+
α

sin − sin cos cos sin − sin − sin sin

cos cos sin − sin − cos − cos cos cos

tan − tan cot − cot − tan tan − tan tan

Werte der trigonometrischen Funktionen

α 0° 30° 45° 60° 90° 120° 150° 180° 270°

0 π
6

π
4

π
3

π
2

2π
3

5π
6

π 3π
2

sin 0 1
2

√
2
2

√
3

2
1

√
3

2
1
2

0 −1

cos 1
√
3

2

√
2
2

1
2

0 − 1
2

−
√

3
2

−1 0

tan 0
√
3

3
1

√
3 −

√
3 −

√
3

3
0
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8.3 Integrale & Ableitungen

F (x) f(x) f ′(x)

x c 0
1

a+1
· xa+1 xa a · xa−1

1
a·(n+1)

· (ax+ b)n+1 (ax+ b)n n · (ax+ b)n−1 · a
ln |x| 1

x
= x−1 − 1

x2 = −x−2

2
3
· x

3
2

√
x = x

1
2 1

2
√
x
= 1

2
· x− 1

2

n
n+1

· x
1
n
+1 n

√
x = x

1
n 1

n
· x

1
n
−1

ex ex ex

1
ln(a)

· ax ax ax · ln(a)
x · (ln |x| − 1) ln |x| 1

x
= x−1

x
ln(a)

· (ln |x| − 1) loga(x)
1

x·ln(a)

− cos(x) sin(x) cos(x)

sin(x) cos(x) − sin(x)

− ln | cos(x)| tan(x) 1
cos(x)2

= 1 + tan(x)2

ln | sin(x)| cot(x) − 1
sin(x)2

x · arcsin(x) +
√
1− x2 arcsin(x) 1√

1−x2

x · arccos(x)−
√
1− x2 arccos(x) − 1√

1−x2

x · arctan(x)− ln(x2+1)
2

arctan(x) 1
x2+1

sinh(x) cosh(x) sinh(x)

cosh(x) sinh(x) cosh(x)

ln | cosh(x)| tanh(x) 1
cosh(x)2

= 1− tanh(x)2

arcsinh(x) 1√
x2+1

arccosh(x) 1√
x2−1

arctanh() 1
1−x2

8.4 Taylorreihen

f(x) Tn

ex 1 + x+ x2

2
+ x3

3!
+ x4

4!
+O(x5)

sinx x− x3

3!
+ x5

5!
+O(x7)

sinh(x) x+ x3

3!
+ x5

5!
+O(x7)

cos(x) 1− x2

2
+ x4

4!
− x6

6!
+O(x8)

cosh(x) 1 + x2

2
+ x4

4!
+ x6

6!
+O(x8)

tan(x) x+ x3

3
+ 2x5

15
+O(x7)

tanh(x) x− x3

3
+ 2x5

15
+O(x7)

log(1 + x) x− x2

2
+ x3

3
− x4

4
+O(x5)

(1 + x)α 1 + αx+
α(α−1)

2!
x2 +

α(α−1)(α−2)
3!

x3 +O(x4)
√
1 + x 1 + x

2
− x2

8
+ x3

16
−O(x4)

8.5 Weitere Integrale & Ableitungen

F (x) f(x)

1
a
ln |ax+ b| 1

ax+b
ax
c

− ad−bc
c2

ln |cx+ d| a(cx+d)−c(ax+b)

(cx+d)2

x
2
f(x) + a2

2
ln |x+ f(x)|

√
a2 + x2

x
2
f(x)− a2

2
arcsin( x

|a| )
√
a2 − x2

x
2
f(x)− a2

2
ln |x+ f(x)|

√
x2 − a2

ln(x+
√
x2 ± a2) 1√

x2±a2

arcsin( x
|a| )

1√
a2−x2

1
a
· arctan(x

a
) 1

x2+a2

− 1
a
cos(ax+ b) sin(ax+ b)

1
a
sin(ax+ b) cos(ax+ b)

xx xx · (1 + ln |x|)
(xx)x (xx)x(x+ 2x ln |x|)
x(xx) x(xx)(xx−1 + ln |x| · xx(1 + ln |x|)

1
2
(x− 1

2
sin(2x)) sin(x)2

1
2
(x+ 1

2
sin(2x)) cos(x)2

8.6 Grenzwerte: Folgen

limx→∞
1
x
= 0 limx→∞ 1 + 1

x
= 1

limx→∞ ex = ∞ limx→−∞ ex = 0

limx→∞ e−x = 0 limx→−∞ e−x = ∞
limx→∞

ex

xm = ∞ limx→−∞ xex = 0

limx→∞ ln(x) = ∞ limx→0 ln(x) = −∞
limx→∞(1 + x)

1
x = 1 limx→0(1 + x)

1
x = e

limx→∞
(
1 + 1

x

)b
= 1 limx→∞

(
1 + 1

x

)b
= 1

limx→∞ xaqx = 0, ∀0 ≤ q < 1 limx→∞ n
1
n = 1

limx→±∞
(
1 + 1

x

)x
= e limx→∞

(
1− 1

x

)x
= 1

e

limx→±∞
(
1 + k

x

)mx
= ekm limx→0

sin x
x

= 1

limx→0
1

cos(x)
= 1 limx→0

cos x−1
x

= 0

limx→0
log 1−x

x
= −1 limx→0 x log x = 0

limx→0
1−cos x

x2 = 1
2

limx→0
ex−1

x
= 1

limx→0
x

arctan x
= 1 limx→∞ arctanx = π

2

limx→∞
(

x
x+k

)x
= e−k limx→0

ex−1
x

= 1

limx→0
ax−1

x
= ln(a) ∀a > 0 limx→0

eax−1
x

= a

limx→0
ln(x+1)

x
= 1 limx→1

ln(x)
x−1

= 1

limx→∞
ln(x)
x

= 0 limx→∞
log(x)
xa = 0

limx→∞ x
√
x = 1 limx→∞

2x
2x

= 0

lim
x→π−

2

tanx = +∞ lim
x→π+

2

tanx = −∞

limx→∞
sin x
x

= 0 limx→0+ x lnx = 0

8.7 Grenzwerte: Reihen∑n
i=1 i =

n(n+1)
2

∑n
i=1 i

2 =
n(n+1)(2n+1)

6∑n
i=1 i

3 =
n2(n+1)2

4

∑∞
i=1

1
n2 = π2

6∑∞
i=1

1
n(n+1)

= 1
∑∞

i=1 z
i = 1−zi+1

1−z
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