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1 Riaume

1.1 Reelle Zahlen

S 1.1: (Lindemann) Es gibt keine Gleichung der Form 2" + a,,_12" ' + ... 4+ ag = 0 mit a; € Q so dass x = 7 eine Losung ist

K 1.8: (Archimedisches Prinzip) Sei x € R mit > 0 und y € R. Dann existiert n € Nmit y <n -z

Max, Min, Betrag Definition 1.10

Seien z,y € R. Dann:

(1) max{z,y} = {

y fallsy <uwz (#ii) Der Absolutbetrag von
z € R:|z| =maxz, —x

r fallsy <z

(i) min{z,y} = {

y fallsz <y z fallsx <y

Eigenschaften des Absolutbetrags

(1) |z >0 Vz R (ii) |zyl = lzlly| Voz,y e R (iti) |z +y| < ||+ |y (w) |z +y| = [lz] = lyl|

S 1.12: (Young’sche Ungleichung) ¥Ye > 0, Vz,y € R gilt: 2|ay| < ex? + %y2

Definition 1.13

(i) ¢ € R obere Schranke von A falls Va € A : a < c. A nach oben beschrinkt falls eine obere Schranke fiir A existiert
(ii) ¢ € R untere Schranke von A falls Va € A : a < ¢. A nach unten beschrinkt falls eine untere Schranke fiir A existiert
(i) Element m € R Maximum von A falls m € A und m obere Schranke von A ist
(iv) Element m € R Minimum von A falls m € A und m untere Schranke von A ist

Supremum & Infimum m

(i) Die kleinste obere Schranke von einer nach oben beschrinkten Menge A, gennant das Supremum von A, ist definiert
als ¢ := sup(A). Es existiert nur falls die Menge nach oben beschréinkt ist.

(i) Die grosste untere Schranke von einer nach unten beschrinkten Menge A, gennant das Infimum von A, ist definiert
als ¢ := inf(A). Es existiert nur falls die Menge nach unten beschréinkt ist.

_J

\
Supremum & Infimum m

Sei ACBCR
(1) Falls B nach oben beschréinkt ist, gilt sup(A) < sup(B)  (2) Falls B nach unten beschrinkt ist, gilt inf(B) < inf(A) )

1.3 Komplexe Zahlen

Operationen: i = —1 (NICHT i = /—1 dasonst 1 = —1). Komplexe Zahl z; = a;+bj;i. Addition, Subtraktion (ai+as)+(by£bs)i.
arby + agby | agby —arby -
b3 + b3 b2b3 '

Multiplikation (ajas — b1ba) + (a1bs + asby )i. Division

Teile: R(a + bi) := a (Realteil), TJ(a + bi) := b (Imaginiirteil), |z| := va? + b% (modulus), a + bi := a — bi (Komplexe Konjugation);
Polarkoordinaten: a+bi (Normalform), 7-€!® (Polarform). Transformation polar — normal: 7 -cos(¢) -+ -sin(¢)i. Transformation

i arcsin( b
normal — polar: |z| - €' aresin(rzy).

Fundamentalsatz der Algebra m

Sein >1,n € N und sei

P)=2"4+an12"'+...+ap, a;€C

Dann gibt es z1,..., 2, € C so dass
Pz)=(z—21)(z—22)...(2 — z)

Die Menge {z1,...,2,} und die Vielfachheit der Nullstellen z; sind eindeutig bestimmt.

Surjektivitit Eine Funktion f: X — Y, ist Surjektiv, g.d.w. Vy € Y, 3z € X : f(z) = y (stetige Funktion)

Injektivitait T 7é Ty = f(l‘l) 7é f(l'g)



2 Folgen und Reihen

2.1 Grenzwerte

D 2.5: Eine Folge (a,)n>1 heisst konvergent falls 3 € R s.d. Ve > 0 die Menge {n € N* : a,, €]l —¢,l + ¢[} endlich ist. Jede
konvergente Folge ist beschrénkt. 'L 2.7: (a,)n>1 konvergiert gegen | = lim,, o a, < Ve >0 IN > 1sd. |a, — 1| <e ¥n > N

S 2.9: (an)n>1 und (by,)n>1 konvergent, a = lim, o @y, b = lim,,_, o, b,,. Dann gilt:

o (1) (an + by)n>1 konvergent und lim, o (an + by) = e (3) Falls zudem b,, # 0 Vn > 1 and b # 0, dann gilt
a+ b; (an + by),,~; konvergent und lim,, o0 (an, +by) = a+b;
e (2) (an - by) konvergent lim, o0 (ay - by) = a - b; e (4) Falls 3K > 1 mit a, <b, Vn> K =a<b

2.2 Der Satz von Weierstrass
D 2.1: (a,,)n>1 monoton wachsend (fallend) falls a,, < any1 (an > apy1) Vo >'1

S 2.2: (Weierstrass) (ay)n>1 monoton wachsend (sinkend) und nach oben (unten) beschrinkt konvergiert gegen lim, o0 a,, =

sup{a, : n > 1} (lim,_ o a, = inf{a, : n > 1}), genannt das Supremum und Infimum Bsp 2.7: lim, (1 + %)n =e

L 2.8: (Bernoulli Ungleichung) (14+2)" >1+n-2z Vne N,z > —1

2.3 Limes Superior und Limes Inferior

Fiir (ap)n>1 definieren wir zwei monotone Folgen b,, = inf{ay, : ¥ > n} und ¢, = sup{ay : k > n}, dann ist b, < b1 Vn > 1
und ¢,41 < ¢, Vn > 1, und beide Folgen sind beschriankt. Zudem konvergieren beide und es gilt liminf, - @, := lim,,_, o b, und
limsup,,_, . an := lim,,_,o ¢,. Ausserdem gilt: liminf,,_, a, < limsup,,_, o ap.

2.4 Cauchy Kriterium (Konvergenzkriterien)

L 2.1: (a,)n>1 konvergiert genau dann, wenn sie beschrankt ist und liminf,,_, o a, = limsup,,_, ., an
S 2.2: (Cauchy Kriterium) (a,)n>1 konvergent <& Ve >0 IN > 1so dass |a, — an| <e Yn,m > N

2.5 Der Satz von Bolzano-Weierstrass

D 2.1: (Abgeschlossenes Intervall) Teilmenge I C R der Form wie unten zu sehen und der Linge £(I) = b — a (fiir (1)) oder
L(I) = o0:
(1) [a,b]; a<b; a,beR (2) [a,+o; a€R (8) ] —o0,a]; a€R (4) ] — 00, +o0[=R
Ein Intervall I ist abgeschlossen < Fiir jede konvergente Folge aus Elementen von I auch deren Grenzwerte in I enthalten sind
S 2.6: (Cauchy-Cantor) Sei I D ... 2 I, D I,41 2 ... eine Folge abgeschlossener Intervalle mit £(I;) < 4oco. Dann ist
ﬂfél I, # 0. Falls zudem lim,,_, o, £(I,) = 0, dann enthilt die Menge genau einen Punkt. (S 2.7: R ist nicht abzihlbar
D 2.8: (Teilfolge von (an)n>1) (bn)n>1 wobei b, = ayny und I(n) <Il(n+1) ¥Yn > 1
S 2.9: (Bolzano- Weierstrass) Jede beschrinkte Folge besitzt eine konvergente Teilfolge. Zudem: lim inf a,, < hm b, < limsupa,
n—0o0 n—00

2.6 Folgen in Rdumen ausserhalb der Reellen Zahlen

D 2.1: Folgen in R? und C werden gleich wie in R notiert

D 2.2: (a,,)n>1 in R? heisst konvergent falls Ja € R? so dass Ve >0 3IN > 1 mit ||a,, —a|| <e Vn >N

S 2.3: Sei b= (b1,...,b,) (Koordinaten von b, da b ein vektor ist). Dann ist lim,,_,o ap, = b < lim,, o apj =b; V1 < j<d
S 2.7: (an)n>1 konvergiert < (ay,)n>1 ist eine Cauchy-Folge; Jede beschrénkte Folge hat eine konvergierende Teilfolge

2.7 Reihen
D 2.1: (Konvergenz) > p-, aj konvergiert falls (S,,),>1 (Folge von Partialsummen) konvergiert, d.h. "7, ay := lim, oo Sy,

Bsp 2.2: (Geometrische Reihe) Konvergiert gegen %_q, und s, = aj - 11__qqn Bsp 2.3: (Harmonische Reihe) > 0" | L divergiert

S 2.4: Seien ) oo, a und Yoo by konvergent a € C. Dann ist:

1. i (ag + by) konvergent und Z (ag +br) = (Z ak> + (i bk>
k=1

ol

1 k=1

2. Z (a - ar,) konvergent undi (a-ap)=a- (Zak>

k=1 k=1




S 2.5: (Cauchy Kriterium) Eine Reihe Y ;- | ay, ist konvergent < Ve >0 IN > 1mit [> ax] <e Ym>n> N
S 2.6: Y -, a, mit ar > 0 Vk € N* konvergiert < (S,,)n>1,5, = Y, @k ist nach oben beschréinkt
K 2.7: (Vergleichssatz) > poq ar und > p— ar mit 0 < aj < by Vk > K (wo K > 1), dann gelten:

> e, by, konvergent = Y77 | aj, konvergent > e, ak divergent = Y77 | by divergent

D 2.9: (Absolute Konvergent) Eine Reihe fiir welche >~ | |aj| konvergiert. Eine Anwendung des Cauchy Kriteriums liefert:
S 2.10: Eine absolut konvergente Reihe ist auch konvergent und |32, ax] < Y pey |ak]

[ECESRESRAee| >0, o lonvorgiert fir n > 1

S 2.12: (Leibniz) Sei (ay)n>1 monoton fallend mit a,, > 0 ¥n > 1 und lim,,_, o a,, = 0. Dann konvergiert S := Zzil(—l)k+1ak
und a1 —as < S < aq
Usage Um Konvergenz zu zeigen, beweise dass (a,),>1 monoton fallend ist, a,, > 0 und dass der Grenzwert 0 ist

D 2.15: (Umordnung) Eine Reihe Y77, af, fiir eine Y7 | ay, falls eine Bijektion gibt ¢ so dass aj, = ag(n)

S 2.17: (Dirichlet) Falls 2211 ay, absolut konvergiert, so konvergiert jede Umordnung der Reihe zum selben Grenzwert.

S 2.18: (Quotientenkriterium) Reihe s mit a,, # 0 VYn > 1, s konvergiert absolut falls lim sup [t < 1. Falls lim inf M
n—00 |a'n,| n—o0 |an
divergiert sie. Falls einer der Grenzwerte gleich 1 ist, dann war der Test nicht eindeutig.

>1

S 2.19: (Wurzelkriterium) Falls lim sup 3/|a,| < 1 konvergiert die Folge. Falls der Grenzwert grosser als eins ist, divergiert sie

n—oo

K 2.20: (Konvergenzradius) Eine Potenzreihe der Form .- c,2" konvergiert absolut fiir alle |z| < p und divergiert fiir alle

falls 1 =0
2| > p. Sei & = limsup,,_,, /Jex], dann ist p = {Too e

7 falls [ >0

D 2.23: Fiir eine Doppelreihe Z?}>o A5, Zzozo by ist eine lineare Anordnung falls eine Bijektion o existiert s.d. by = aq ()

. Der Konvergenzradius ist dann definiert durch p falls p # oo

7

S 2.24: (Cauchy) Wir nehmen an, 3B > 0 s.d. ZZ la;j| < B VYm > 0. Dann gilt: S; := Zaij Vi > 0 und U; :=
i=0 j=0 =0

Z a;; j > 0 konvergieren absolute, sowie Z S; und Z U; und es gilt: Z Sy = Z U;.

i=0 i=0 j=0 i=0 j=0

Jede lineare Anordnung konvergiert absolut mit demselben Grenzwert.

D 2.25: (Cauchy Produkt) Z Zan_jbj = apbp + (agb1 + a1bg) + (agbz + a1by + asby) + . .. fiir zwei Folgen Zai, ij
n=0 \j=0 i=0 j=0

S 2.27: Falls zwei Reihen absolut konvergieren, so knovergiert auch ihr Cauchy Produkt und es besteht aus den ausmultiplizierten

Termen der zwei Reihen.

S 2.28: Sei f,, eine Folge. Wir nehmen an, dass:
o f(j):=lim, o fn(y) existiert Vj € N Dann folgt Zf(J) ~ lim an(j)
e dgsd. |fn(4)| <9(j) Vj,n>0und Z;’;Og(j) konvergiert §=0 "0

K 2.29: Fiir jedes z € C konvergiert die Folge und es gilt lim (1 + i) =exp(z) wo exp(z) :=1+ 2+ 22—2, + g—? + ...
n—oo n : :



3 Stetige Funktionen

3.1 Reellwertige Funktionen

D 3.1: (Beschrinkung) Sei f € RP, wobei RP die Menge aller Funktionen f : D — R ist, d.h. R” ist ein Vektorraum
e f ist nach oben beschrinkt, falls f(D) C R nach oben beschrinkt ist.
e f ist nach unten beschrdnkt, falls f(D) C R nach unten beschrinkt ist.
o f ist beschrdnkt falls f(D) C R beschriankt ist.

D 3.2: (Monotonie) Falls D C R gibt es die folgenden Monotoniebegriffe:
e monoton wachsend Vz,y € D x <y = f(z) < f(y)
streng monoton wachsend, falls Va,y € D x <y = f(z) < f(y)
monoton fallend, falls Ve,y € D xz <y = f(z) > f(y)
streng monoton fallend, falls Vz,y € D x <y = f(z) > f(y)
monoton, falls f monoton wachsend oder monoton fallend ist
streng monoton, falls f streng monoton machsend oder streng monoton fallend ist

3.2 Stetigkeit

Intuition: Eine stetige Funktion kann ohne den Stift zu heben gezeichnet werden.

D 3.1: (Stetigkeit von f in xo) Falls fiir jedes € > 0 ein § existiert, s.d. |x — x| < § = |f(z) — f(xo)| < e D 3.2: (Stetigkeit) f
stetig falls f in allen Punkten von D stetig ist [S 8.4: f ist stetig in x¢ <= fir (ay)n>1 limy oo an = 20 = f(an) = f(z0)

K 3.5: Seien f, g stetig in xg, dann gilt f + g, A- f, g, f o g sind stetig in z¢ und falls g(zg) # 0, ist 5 stetig in xq fiir
gzDﬁ{xeD:g(x);éO}—ﬂR

D 3.6: (Polynomiale Funktion) P(x) = anx™ + ...+ ag, falls a, # 0, deg(P) = n (Grad von P) K 3.7: Sie sind stetig auf ganz

R K 3.8: P,Q pol. funk. auf R mit @) # 0, wobei 1, ..., x,, die Nullstellen von @ sind. Dann gilt: g R\{z1,...,xm} = Rist
stetig

3.3 Zwischenwertsatz

S 3.1: Sei I C R ein Intervall, f : I — R eine stetige Funktion und a,b € I. Fiir jedes ¢ zwischen f(a) und f(b) existiert ein z
zwischen a und b mit f(z) = ¢ 'K 3.2: Sei P ein Polynom mit deg(P) = n, n ungerade. Dann hat P mind. eine Nullstelle in R

3.4 Min-Max-Satz
D 3.2:] (Kompaktes Intervall) falls das Intervall I von der Form I = [a,b], a < bist L 8.3: f, g stetig in xg. Dann gilt: |f|,

max(f, g) und min(f, ) sind stetig in xo (min(f, g) ist das Minimum der beiden Funktionen fiir jedes z) L 3.4: (x,,),>1 konvergente

Reihe in R mit lim z, € Rund a <b. Falls {z,, : n > 1} C [a,b] dann gilt lim x,, € [a,b] [S 3.5: Sei [ stetig auf dem kompakten
n—oo n—oo

Intervall I. Dann gilt Ju € T und Jv € I mit f(u) < f(z) < f(v) Vo € I. f ist beschrankt.

3.5 Satz iiber die Umkehrabbildung

S 3.1: Seien D1,D2 CR, f: Dy — Ds, g: Dy = R, xg € D;. Falls f stetig in z, g auf f(z¢) dann fog: D; — R stetig in zg
K 3.2: Falls in Satz 3.5.1 f stetig auf Dy und g auf Ds, dann ist g o f stetig auf D,

S 3.3: (Satz iber Umkehrabbildung) Sei f : I — R stetig, streng monoton und sei I C R ein Intervall. Dann gilt: J := f(I) CR
ist ein Intervall und f~!:.J — I ist stetig und streng monoton.

3.6 Reellwertige Exponentialfunktion

Die Exponentialfunktion exp : C — C wird normalerweise durch eine auf ganz C konvergente Potenzreihe definiert: exp(z) := Z z—',

n!
n=0

hier fiir z € R. exp ist bijektiv, streng monoton wachsend, glatt und stetig. exp~!(z) = In(z)

S 3.1: exp : R —]0, +o0] ist streng monoton wachsend, stetig und surjektiv K 8.2: exp(z) >0 Vx € R

K 3.3: exp(z) > exp(y) Vz >y K 8.4: exp(z) > 1+ Vo € R K 3.5: In :]0, +00[— R ist streng monoton wachsend, stetig und

bijektiv. Es gilt In(a - b) = In(a) + In(b) Va,b €]0,+o0[. Dies ist die Umkehrabbildung von exp K 3.6:

1. Fiir a >0 ]0,+o00[ — ]0,+oo[ ist z — x* eine stetige, streng monoton wachsende Bijektion.
2. Fiir a <0 ]0,+00[ — ]0,+00[ ist  — x* eine stetige, streng monoton fallende Bijektion.

3. In(z*) =aln(z) Va eR, Vx>0 4. 2% 2% = 29t® Va,b €R, V2 >0 5. (2%)° =2 Va,b € R, Vx>0




3.7 Konvergenz von Funktionenfolgen

D 3.1: (Punktweise Konvergenz) (fn)n>1 konvergiert punktweise gegen eine Funktion f : D — R falls fiir alle z € D f(z) =

D 3.3: (Weierstrass) Folge f,, konv. gleichmissig in D gegen f falls Ve >0 IN >1sd.Vn > N, Ve e D :|fp(z) — f(z)| <e
S 3.4: f, ist eine Folge von (in D) stetigen Funktionen die in D gleichmissig konvergieren. Dann ist f (in D) stetig

D 3.5: (Gleichmissige Konvergenz von (fn)n>1)) fn falls Vo € D f(x) := lim,,_,o fn () existiert und (f,)n>1 gleichméssig gegen
f konvergiert
K 3.6: f, konvergiert gleichméssig in D <= Ve >0 IN >1sodass Vn,m > N, Ve € D |f,(z) — fm(z)| <e

K 3.7: Falls f,, eine gleichméssig konvergierende Funktionenfolge ist, dann ist f(x) := lim, o fn(z) stetig

D 3.8: Z fr(z) konvergiert gleichmissig, falls .S, (x) := Z fr(z) gleichméssig konvergiert S 8.9: Angenommen, dass |f,,(z)] <
k=0 k=0

o0
¢n, Yz € D und dass Z ¢, konvergiert. Dann konvergiert Zf;(g ) gleichméssig in D und f (z) :=>0° fnlx) ist stetig in D

n=0
D 3.10: (Konvergenzradius) Siche K 2.7.19 S 3.11: Eine Potenzreihe konvergiert gleichméssig auf | — r, 7] wobei 0 < r < p
3.8 Trigonometrische Funktionen

S 3.1:sin: R — R und cos : R — R sind stetige Funktionen 'S 3.2:

1. expiz = cos(z) +isin(z) Vz € C 4. sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
2. cos(z) = cos(—z) and sin(—z) = —sin(z) Yz € C cos(z + w) = cos(z) cos(w) — sin(z) sin(w)
iz _ ,—1z 12 12 2 s 2 _
3. sin(z) = e 2.6  cos(z) = e —;—e 5. cos(z)? +sin(z)*=1 z€C
i

K 3.3: sin(22) = 2sin(z) cos(z) and cos(2z) = cos(z)? — sin(z)?

3.9 Pie (delicious)

S 3.1: Die Sinusfunktion hat mindestens eine Nullstelle auf ]0, +oo[ und 7 := inf{¢t > 0 : sin(¢) = 0}. Dann gilt sin(r) =0, 7 €
12,4[; Yz €)0, 7[: sin(z) > 0 and €7 =i K 8.2: 2 > sin(z) > 2 — ’g—? Y0 <0< 6 K 3.3:

1. em=—1, ¥ =1 3. sin(x + 7) = —sin(z), sin(z 4 27) = sin(z) Vz € R

2. sin(z+ %), cos (z+ %) = —sin(z) Vz e R 4. cos(x + m) = — cos(x), cos(z + 2m) = cos(z) Vo € R

5. Nullstellen von Sinus = {k -7 : k € Z} 6. NullStellen von Cosinus = {7 - k-7 : k € Z}
sin(x) > 0 Vx €]2km, (2k + )|, k € Z sin(z) > cos(z) >0 Vo €] — 5 +2km,—5 + 2k + 1)7[, k€ Z
0 Vz €](2k + 1)m, 2k + 2)n[, k€ Z cos(x) >0 Vz €]-F+2k+1)m, =5+ (2k+2)n[, k€ Z

3.10 Grenzwerte von Funktionen
D 3.1: (Hdiufungspunkt): zo € R von D falls V6 > 0 (Jzg — 6,29 + 6[\{zo}) N D #£ 0
D 3.3: A € R ist der Grenzwert von f(z) fiir x — xg bezeichnet lim,_,,, f(x) = A, wobei z¢ ein Haufungspunkt ist, falls:

Ve 36 > 0s.t. Ve € DN (Jog — 6, 20 + I[\{zo}) : |f(x) — Al < e
S 3.7: Seien D, E C R, z, ein Hiufungspunkt von D und f : D — E eine Funktion. Angenommen, dass yo := lim,_,,, existiert
und yg € E. Falls g : E — R in yg stetig ist, dann gilt lim, ., ¢(f(z)) = 9(vo)

Wird gebraucht, wenn Funktionen Polstellen haben. Wir ndhhern uns der Polstelle von beiden Seiten an, um sie zu evaluieren.
Anders als an der Kanti notieren wir sie mit * — z, anstelle von mit = 1 x¢




4 Differenzierbare Funktionen

4.1 Ableiten

existiert.

D 4.1: (Differenzierbarkeit) f ist differenzierbar in zq falls f'(z) = lim J@) = J(z0) = lim f@o+h) = flwo)

T—=zo X — T h—0 h
S 4.3: Sei xg Hiufungspunkt von D: f differenzierbar in xg <= 3¢ € R und r : D — R mit (falls es zutrifft, ist ¢ = f/(x0)
eindeutig bestimmt):

flz) = f(xo) + c(x — xo) + r(z)(x — x0) sowie auch r(z¢) = 0 und r ist stetig in xg
S 4.4: f differenzierbar in zy < 3¢ : D — R stetig in x = und f(x) = f(xo) + ¢(z)(x — z¢) Vo € D. Dann ist ¢(z¢) = f'(x0)

K 4.5: ¢y € D Haufungspunkt von D. Falls f differenzierbar in zg, f stetig in x¢ D 4.7: f ist auf ganz D differenzierbar, falls f
fiir jeden Haufungspunkt x( in zq differenzierbar ist

S 4.10: (Grundregeln vom Ableiten) Let f, g be functions differentiable in xq

e (f +9)(x0) = f'(@o) + ¢'(x0) s il 1 Plaoaten) - fad o)
o (F9)'@0) = F'(@0)g(0) + f(@0)g'(xo) falls g(z0) #0, <g> (=) = o(z0)?

S 4.12: (Kettenregel) xy € D Haufungspunkt, f : D — E differenzierbar in zg s.d. yo := f(x¢) € E ein Haufungspunkt von E
ist und sei g : E — R differenzierbar in yo. Dann gilt g o f : D — R differenzierbar in z¢ und (g o f) (x0) = ¢'(f(x0)) - f'(z0)
K 4.13: Sei f : D — E eine in 2o (Haufungspunkt) differenzierbare Bijektion f/(xq) # 0 und zudem sei f~! stetig in yo = f(z0).

1
Dann ist y ein Haufungspunkt von E, f~! differenzierbar in yo und (f ')’ (yo) = Flao)
T

4.2 Erste Ableitung: Wichtige Sitze

D 4.1: (1) f hat ein Maximum in ¢ falls 3§ > 0 s.d. f(z) < f(x0) Va €]ag — 6,20+ [ N D (2) f hat ein Minimum in zq falls
36 > 0s.d. f(x) > f(xo) Vo €]z — 0,20 + 0] N D (3) f hat ein lokales Extremum in z fall es entweder ein max oder min ist

S 4.2: Angenommen, f is in xg differenzierbar f’(x¢) = 0, dann existiert in zy ein Extremum

1. Falls f'(zo) > 0 36 > 0 sd. f(z) > f(m) Vo € 2. Falls f(zo) < 0 36 > 0 sd. f(x) < flzmo) Vo €
Jzo, 2o + 6[ und f(z) < f(zo) V& €]zo — 0,20 Jzo, @0 + 6[ und f(x) > f(zo) V& €]zo — 0,20

S 4.3: Sei [ : [a,b] — R stetig und differenzierbar in |a, b[. Falls f(a) = f(b), 3¢ €]a, b mit f'(§) =0
S 4.4: Sei f wie oben, dann 3¢ €]a, b] s.t. f(b) — f(a) = f(&)(b—a) K 4.5: Sei f, g wie oben (I = [a,b]), dann gilt:

1. f/(¢§) =0 V& €la,b] = f konstant 5. f/(&§) <0 V¢ €la,b] = f monoton fallend auf I
2. f'(€) = g'(€) V& €la,b] = Fc € Rmit f(z) = g(x)+ 6. f/(€) <0 V& €la,b] = f strikt mon. fallend auf T
¢ VY € [a,b] 7. Falls 3M > 0 s.d. |f'(§)| < M V¢ €la,b[, dann gilt
3. (&) >0 V¢ €la,b] = f monoton wachsend auf I Vay,xe € [a,b] |f(x1) — f(z2)| < M|xy — 22|
4. f'(€) >0 V¢ €]a,b] = f strikt mon. wachsend auf T

S 4.10: f,g,& Wie vorhin definiert. Dann gilt ¢’(£)(f(b) — f(a)) = f'(€)(g(b) — g(a)). If ¢'(z) # 0 x €la,b], g(a) # g(b) and
Z; :g((Z)) I: g’lgg S 4.11: (L’Hospital) f,g vxjie vorhin, mit ¢'(z) # 0 Va €la,b|. Falls wliril_ f(z) =0, wlgil— g(z) = 0 und
im = $ existiert, folgt lim f(=) = lim F@) D 4.14: f konvex auf I fallsVe <y e Tund A € [0,1] f(Az+(1-N)y) <
a—b- g'(x) a—b- g(x)  a—b- ¢'(2)

M (x)+ (1 =N f(y). Streng konvex falls jedes < durch < ersetzt wird S 4.17: f (wie immer) (streng) konvex <= f’ (streng)
monoton wachsend. (K 4.18: Falls f” existiert ist f (streng) konvex falls f”” > 0 (oder f” > 0) auf ]a, ]

4.3 Hohere Ableitungen

Ho6here Ableitungen Definition 4.1

1. Fiir n > 2, f n-mal differenzierbar in D falls f(*~) in D differenzierbar ist. (™ := (f(*=D)’, n-te Ableitung von f
2. f ist n-mal stetig differenzierbar in D falls f(™ existiert und ist stetig in D
3. fist glatt in D falls Vn > 1 £ existiert.

S4.3:(1) (f+9)™ = fM 4 g™ (2) (f 9™ =3, (Z)f(k)g("’k) (binomial expansion), fiir f,g n-mal differenzierbar
S 4.5: f, g wie oben; Falls g(z) # 0 Vz € D, dann ist S n-mal in D differenzierbar (S 4.6: Seien E, D C R fiir die jeder Punkt ein
g

Hiufungspunkt ist und f : D — F und g : E — D, beide n-mal differenzierbar. Dann ist (go f)™ (z) = 3°1_, Ak (2)(g® o f)(2)
wobei A, i ein Polynom in den Funktionen f/, F@ L =R gt



4.4 Potenzreihen und Taylor Approximation

S 4.1: Angenommen, dass (f,)n>1 (fiir f, und f], stetig differenzierbar) und (f})n>1 gleichméssig auf ]a,b[ konvergieren fiir
fiJa, b= R mit f:= lim f, und p:= lim f,. Dann ist f stetig differenzierbar und f’ = p
n—oo n—oo

oo

S 4.2: Potenzreihe Z cpx® mit p > 0, f(z) = ch(z — 20)" auf |zg — p, zo + p[ differenzierbar und f’(z) = Z kep(z — x0)F 1
k=0 k=0 k=1

A k!
K 4.3: Wie in 4.4.1, f glatt auf einem konvexen Invervall und fU)(z) Z Ckm(
— )

k=i
~ f®(a) FrD(e)

= k! (n+1)!

Approximation) Gleich wie oben, aber f : [¢,d] — R anstelle von f : [a,b] = R und ¢ < a < d und £ zwischen x und a.

f(j)(mo)

T — xo)k*j. Insbesondere, ¢; = ,'
j!

S 4.5: f stetig, 3f(" Y. Fiir jedes a < z < b 3¢ €la, x| mit f(z) (z —a)k + (r —a)"™' K 4.6: (Taylor

K 4.7: a < z9 < b und f wie zuvor, angenommen, dass f’(zo) = f® (zo) = ... = f(™(z¢) = 0. Dann gilt:
1. Falls n gerade und xo lokales Extremum, f(*+(z0) =0 3. Falls n ungerade und f"*Y)(zq) < 0, z¢ strikte lokale Ma-

2. Falls n ungerade und f"+V)(zq) > 0, o strikte lokale Mi- ximalstelle

nimalstelle

K 4.8: f 2-mal differenzierbar und a < g < b, wir nehmen an, dass f’(xzg) =0
1. f@(x) > 0, x¢ strikte lokale Minimalstelle 2. f®)(xg) < 0, zg strikte lokale Maximalstelle

4.5 Exercise Help

n ;_ n(ntl) n 2 _ n(ntl)(2n+1)
Do i= p) Dot = 6

n 3 _ n2(nt1)? o 1 _ x2

i=1t = 1 i=1 7,2 — 6

oo 1 _ oo i __ l—zi+1

i=1 ninFD = 1 2t 2 =T

Héaufige Grenzwerte Bekannte Taylorreihen

2

. 1 . 1 x xr (L'S (1;4 O 5
limg oo 3 =0 limy 5014+ £ =1 ef=ltaot -+ ot pt (z”)

(L"j

5
. T
lim, 00 € = 00 limg s — oo €® =0 Slﬂz:l‘—y-‘ry*'o(ﬂ)

. CL‘3 IS
lim, y0ce =0 lim, , e ¥ =00 sinh(z) = = + 3 + B +0(@z")

i e I r _ g ‘()_1_£+£_w_6+(9(3)
Mg — 0o T oo Mg — —co TE = cos(z) = 2 41 6! T
; . 22 ozt g® .
limg o0 In(z) = 00 limg o ln(z) = —oc0 cosh(z) =1+ St t o +0(z®)

1 . 1 3 5
limg ,oo(14+2) =1 limg ,o(l+2)z =e tan(z) = @ + % + 21905 +0@=")
. 1\b . 1\b 3 245 7
limeooo (14 2)" =1 lime oo (1+2)" =1 tanh(z) = 2 — — + = + 0@

< 2

s a : 1 xz xS 1'4 5
limy oo z%¢” =0, VO< g <1 | limgyoonn =1 log(1 @) =2 — — + o — — + O(a")

1

limg oo (1 o %)J: =1 a(a_l)wer oc(a—l)(oz—Q)zg

2! 3l 0@

14+2)*=14az+

limg o 4oo (1 + B)M® = k™ limg o S22 =1 mzl+g—2—2+f—;—0(z4)
limg 0 #m =1 lim,_,o €22=1 =0
lim, o 28122 = 1 limg 0 zlogz = 0
limg, o H# = % limg, 0 °$;1 =1
€T 4

limg 0 gotans = 1 limg_, o0 arctanz = 5
limg 0o (xf_—k)l =eF limg, 0 513;1 =1
limy 0 2L =In(a) Va > 0 | limyo o=t =a
lim, o 2EHD — g limg ;2 —
limy 0o 22 — limy 0o 22E) — 0
limz oo Yz =1 lima s 0o g—z =0
lim <— tanx = 400 lim -+ tanz = —oo0

Tz T5— T 5
limg oo SBE 0 lim, 4+ xlnz =0



5 Riemann Integral

5.1 Definition und Integrabilitédtskriterien
D 5.1: (Partition) endhche Teilmenge P C I wo I = [a,b] und {a,b} C P

Untersumme: s(f, P Z fidiy, fi= inf  f(x), Obersumme: S(f, P Z fidiy, fi= sup  f(x), §; sub-interval

zi—1<z<z; zi—1<z<z;

L 5.2: Sei P’ eine Verfemerung von P, dann s(f, P) < s(f,P') < S(f,P') < S(f, P); fiir beliebige Py, Py, s(f, P1) < S(f, P»)
b
D 5.3: f beschriinkt ist integrierbar falls s(f) = S(f) und das Integral ist / f(z) dz
a

S 5.4: f beschrinkt, integrierbar <= Ve > 0 3P € P(I) mit S(f, P) — s(f, P) < & wobei P(I) alle Paritionen von I ist
S 5.9: f integrierbar < Ve >0 30 > 0s.d. VP € Ps(I),S(f, P) — s(f, P) < €, wobei Ps(I) die Menge von P wofiir max 0; <46

K 5.10: f integrierbar mit A := f; f@)de <= Ve >0 3§ > 0s.d. VP € P(I) mit §(P) < und &,...,&, mit & € [zi — 1, 2]

und P = {zg,...,2,}, A—if(fi)(xi_xifl) <e

=1

5.2 Integrierbare Funktionen

S 5.1: f, g beschrinkt, integrierbar und A € R. Dann gilt f 4+ g, A- f, f - g, |f], max(f,g), min(f,g) und f(falls lg(x)| > B >
0 Vx € [a,b] alle integrierbar (K 5.3: Seien P, Q Polynome, @ keine Nullstellen auf [a,b], dann: [a,b] = R und = — Q(wg int.

D 5.4: (Gleichmissige Stetigkeit) falls Ve > 0 30 > 0 Vz,y € D : |z —y| < § = |f(z) — f(y)| < € S 5.6: [ stetig auf
kompaktem Intervall I = [a,b] = f ist gleichmissig stetig auf I S 5.7: f stetig = f integrierbar (S 5.8: f monoton = f

integrierbar (S 5.10: I C R kompaktes Intervall mit I = [a,b] und f1, fo beschrénkt, integrierbar und Ay, A2 € R.
b b b
Dann gilt: / M fi(z) + Aa + fa(x)) dz = /\1/ fi(z) dz + /\2/ fa(x) dz

5.3 Ungleichungen und Mittelwertsatz

b b
S 5.1: f, g beschrinkt, integrierbar und f(z) < g(z)Vz € [a,b], dann / flz)dz < / g(z) dz (K 5.2: falls f beschréinkt,
integrierbar,

a [ ot aa
\/ fab g2(x) dx

b
S 5.4: (Mittelwertsatz) f stetig. Dann gilt 3¢ € [a, b] s.d. / dz = f(&)(b—a) (S 5.6: Sei f stetig, g beschrinkt und integrierbar

< f:|f(x)| dz S 5.8: Sei f,g beschriinkt, integrierbar, dann

f: f2(z) dz

b b
mit g(z) > 0 Va € [a,b]. Dann gilt 3¢ € [a, b] s.d. / f(z)g(x) dez = f(f)/ g(x) d

5.4 Fundamentalsatz der Differentialrechnung

Erster Fundamentalsatz m

Sei a < bund f : [a,b] — R stetig. Die Funktion

ist differenzierbar in [a,b] und F'(z) = f(z) Yz € [a,b]
\ _/

Beweis: Intervall aufteilen: [ f(t) dt + f;o f(t) dt = [T f(t) dt, also F(z) — F(xo) = ffo f(t) dt. Mithilfe des Mittelwertsatzes
erhalten wir f;o f(#) dt = f(&)(x — o) und fiir  # z( ergibt sich %ZFO(%) = f(¢) und da & zwischen 2y und z liegt und da f

stetig ist, lim, ., %ﬁ)@‘” = f(xo) O

D 5.2: (Stammfunktion) F fiir f falls F differenzierbar in [a,b] ist und F’ = f in [a, b]

Zweiter Fundamentalsatz

f wie in 5.4.1. Dann existiert eine Stammfunktion F von f die eindeutig bestimmt ist bist auf die Integrationskonstante und

b
/f@MMZF@—F@




Beweis: Existenz von F gegeben dur 5.4.1. Falls F; und F, Stammfunktionen von f sind, dann F] — =f—-f=0,ie
(Fy — F») = 0. Mithilfe von 4.2.5 (1) erhalten wir, dass Fy — F; konstant ist. Wir haben F(z) = C + [ f ) dt, wobei C' eine

beliebige Konstante ist. Insbesondere, F(b) = C + [ f(t) dt, F(a) = C und deshalb F(b) — F(a) = C + [ f(t) dt—C = [* f(t) dt

b
S 5.5: (Partielle Integration) / f(x)g (z) dz = [f / f'(z)g(x) dz. Aufgepasst mit Zyklen

b »((b))
S 5.6: (Integration durch Substitution) ¢ stetig und differenzierbar. Dann gilt / flo(t)e'(t) dt = / f(x) dzx

a ¢(a)
Um das Obige zu Nutzen muss die innere Funktion passend gewihlt, abgeleitet und riicksubstituiert werden um eine einfacher
integrable Funktion zu erhalten. 'K 5.9: I C R und f: I — R stetig

1. Sei a,b,c € R s.d. das abgeschlossenes Intervall mit 2. Sei a,b,c € R,c # 0 s.d. das abgeschlossene Intervall
Endpunkten a + ¢,b + ¢ in I enthalten ist. Dann gilt mit Endpunkten ac, b in I enthalten ist. Dann gilt
b+c b 1 be b
@) dx:/ ft+o) dt e da::/ Flet) at
a+c a ac a

5.5 Integration einer konvergierenden Reihe

S 5.1: Sei f, : [a,b] — R eine Folge von beschriinkten, integrierbaren Funktionen die gleichméssig gegen f konvergieren Dann ist f

beschriankt integrierbar und lim,,_, o f; fu(z) doz = f; f(z) dz 'K 5.2: f, s.d. die Reihe konvergiert. Dann ist »_ - f fn(z) doz =
b &S]

fa (Zn:o fn(r)) do

K 5.3: f(x) = Y." xra® mit p > 0. Dann ist VO < r < p, f integrierbar auf [—r, 7] und Va €] = p, p[, [ f(t) dt = Y07 Cepant!

5.6 FEuler-McLaurin Summationsformel

D 5.1:Vk > 0, das k-te Bernoulli Polynom By (z) = k!Py(z), wobel P = Py,_1 Yk > 1 und fO Py(z) de =0 Vk > 1 (D 5.2: Sei
By =1.Vk > 2 Bj_; ist rekursiv durch Zf;ol (f)Bl = 0 definiert (S 5.3: (McLaurin Reihe) By(x) = Zi:o (i)BZ-xk i S5.5: f

— i <
k mal stetig differenzierbar, k > 1. Dann gilt fiir B (z) = Bu(x) fir0<e<l . dass
Bi(z —n) fﬁrn§m§n+1wobe1n>1
n —~ — k—1
1. Firk=1: ", f(4) fo Ydx + 2 5(f(n) — £(0) —|—f0 Bi(z)f'(x) dz  unten: Ry = ) fo Bk (z)f®) () d
n k
2. Firk >2: ) f(i) / f(x da:+ +Z “(n)—f9=D(0))+ Ry, Ry = Z / Bi(z)f® (z) d
i=1 j=2 ! (=1)(k=1)

5.7 Stirling’sche Formel

3

12
5.8 Uneigentliche Integrale

2 " -
S 5.1: ng:;’m.exp<+33( )), IRa(m)| < 33 -5 vn>1 L5.2:Vm >n+1>1:|Rs(m,n)| <33 (L - L)

b
D 5.1: f beschriankt und integrierbar auf [a,b]. Falls blim f(x) dz existiert, wir notieren als faoo f(z) dz und sagen f ist
—00 J,

integrierbar auf [a, 400 'L 5.3: f : [a,00[— R beschrinkt und integrierbar auf [a,b]Vb > 0 Falls |f(z) < g(x) Vo > a und g( )
integrierbar auf [a, oo[, dann ist f integrierbar auf [a,co[. Falls 0 < g(z) < f(z) und [ g(z) dz divergiert, wie auch [ f(z

S 5.5: f : [1,00[— [0, co[ monoton fallend. Y77, f(n) konvergiert < [~ f(x) d konverglert D 5.9: Falls [ :]a,b] ist beschrankt
und integrierbar auf [a+e,b],e > 0, aber nicht zwingend auf |a, b], dann ist f integrierbar falls lim, o+ f; 1o f(z) dz existiert, dann

gennant [ b f(z

D 5.12: (Gamma function) Fiir s > 0 definieren wir I'(s fo e Txs~! da
S 5.13: (1) I'(s) erfiilllt T'(1) = 1, T'(s + 1) = sI'(s) Vs > O und T(Az + (1 — \)y) < T(2)*T(y)!=* Va,y >0, VO<A<1
InT
(2) T'(s) einzige Funktion ]0,00[ — 10, 00[ die obige Voraussetzungen erfiillt. Ausserdem: I'(z) = lim el Vo >0

n— oo :c(x+1)(a:+n)
S 5.14: Sei p,q > 1 mit % + % =1, fiir alle f, g : [a,b] — R stetig, dann gilt fa |f(z)g(z)| dz < || fllpllgllq

5.9 Partialbruchzerlegung

Wird fiir rationale Polynom-Funktionen genutzt. Man started mit Aufteilen des Bruchs into (meistens) faktorisierte Teile. Suche
Nullstellen. Nenner in gefundene Teile unterteilen, z.B. —%7 + — +2, dann alle Briiche auf denselben Nenner bringen. Dann muss
p(x) (der Zéhler) des urspriinglichen Bruch gleich dem des neuen Bruchs entsprechen, also Lineares Gleichungssystem zum Finden
der Koeffizienten nutzen. Den Zéhler in die Form von Polynomen bringen, also z.B. (a + b) -  + (2a — 4b), dann ist das SLE

2 4 20 —4

a=—,b= - fiir unser rationales Polynom ————
3 3 2 —21r — 8

Wir kénnen denn die Koeffizienten in den aufgeteilten Bruch einsetzen (hier %7 ...) und wir kénnen normal integrieren

2=a+b
—4=2a-0




6 Tabelle von Ableitungen und Stammfunktionen

Stammfunktion Funktion Ableitung Logarithmen
2l R - (Basiswechsel) log,(x) = ig(z) (Potenzen) log,(x¥) = ylog,(x)
ntl | e (Div, Mul) log,(z - (+)y) = log,(x) + (=) log,(y)
In |z| =g —xt=—— log,(1) =0 Ya €N
x x
%x% VT = 23 1 Partielle Integration Sollte sich ein unvermeidbarer Zyklus,
) ) 2: \1/‘77j wo wir immer wieder denselben Integral erhalten, bilden, kénnen
nilxiﬂ Ve =axn~ %Loﬁ*l wir einfach das Integral zu beiden Seiten addieren und erhal-
ten so 2 mal das Integral auf der linken Seite und kénnen dann
e e o die partielle Integration auf der rechten Seite abschliessen und
eXpl( ) exp(z) exp(z) ZCI{M]?{SSh(ih durch c}lleri Faktor auf der linken Seite dividieren, um
T (az + b)n+1 (ax + b)™ ; n - (ax T b) a as Resultat zu erhalten.
z- (Inz] —1) In(x) z =T Umkehrfunktion der Hyperbelfunktionen
! a” a® a” - 1n(a)
In(a) ) e arcsinh(z) = In (z + V22 + 1)
—— - (In]z| -1 log, |x
oy (= 1) %o 7] - In(a) e arccosh(z) = In (z + V22 — 1)
—cos(x) sin(x) cos(x) 1 1tz
sin(z) cos(z) — sin(z) o arctanh(z) = 3 In (1)
1
—In|cos(z)| tan(z) cos? () Komplement-Trick vax +b— ez +d = %%
1
. i V1= 22 :
@ - arcsin(z) + . arcsin(z) V1 —1332 Werte der trigonometrischen Funktionen
x - arccos(z) — v 1 — 2 arccos(z) i
In(22 + 1) 11 - ° rad sin(§) cos(§) tan(§)
x - arctan(z) — — arctan(z) o] 0° 0 0 1 1
. 1 ° ™ V3 V3
In | sin(z)| cot(z) — 30 3 3 i 2
sin®(x) 45° T V2 V2 1
cosh(z) sinh(z) cosh(z) — e 2
sinh(z) cosh(z)  sinh(z) 60° 5 5 3 V3
In | cosh ()| tanh () : B a—
n|cosh(z anh(z s -
cosh?(x) 1200 2¢ @ —3 —V3
arcsinh(zx) 11:52 135° 3¢ g _g 1
1 o n V3 V3
arccosh(z) 7T 1500 °r i -3 _3
arctanh(z) 1= 180° 7 0 -1 0
Trigonometrie cot(¢) = Eg tan(€) = ng 3. sin(x + w) = sin(x) cos(w) + cos(x) sin(w)
sin S
. R 4. cos(x + w) = cos(z) cos(w) — sin(z) sin(w)
sinh(z) := <=*— : R — R, cosh(z) := % R = [1, 00,

2
cosh(z) = Sh@) — eroe?® gy [ 1]

cosh(z) = e*+e—?

1. cos(z) = cos(—x) und sin(—z) = —sin

—~

x)

2. cos(m — x) = — cos(z) und sin(r — x) sin(x)

(= +
5. cos(x)? + sin(z)? =1
6. sin(2z) = 2sin(z) cos(z)

7. cos(2z) = cos(z)? — sin(z)?

Weitere Ableitungen

F(z) f(z)
1
LIn|az + b| P
acac 7 ad—bc In |C(L’ + d‘ a(cm(réiﬂZ;(ciggaz+b)
5f(x) + aln\fUJrf( )| VaZ+ 2?2
5f(x) — 7 arcsin { g7 a? — x?
2f(x) — S|z + f(x)] 2% —a?
In(x + Va2 £ a?) \/ﬁ
arcsin (ﬁ) \/ﬁ

1 T
a arctan m P

—é cos(ax + b) sin(ax + b)
Lsin(az + b) cos(ax + b)
x* - (14 1n|z|)
()" @) (o + 20Inal)
20 567 (@ 4 Injal -2*(1 + In ja]))
L(x — Lsin(22)) sin(z)?
1(z + 1 sin(22)) cos(z)?
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