
Analysis Cheat-Sheet

Janis Hutz
https://janishutz.com

29. Dezember 2025

Inhaltsverzeichnis
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1 Räume

1.1 Reelle Zahlen

S 1.1: (Lindemann) Es gibt keine Gleichung der Form xn + an−1x
n−1 + . . .+ a0 = 0 mit ai ∈ Q so dass x = π eine Lösung ist

K 1.8: (Archimedisches Prinzip) Sei x ∈ R mit x > 0 und y ∈ R. Dann existiert n ∈ N mit y ≤ n · x

Max, Min, Betrag Definition 1.10

Seien x, y ∈ R. Dann:

(i) max{x, y} =

{
x falls y ≤ x

y falls x ≤ y
(ii) min{x, y} =

{
y falls y ≤ x

x falls x ≤ y

(iii) Der Absolutbetrag von
x ∈ R : |x| = maxx,−x

Eigenschaften des Absolutbetrags Satz 1.11

(i) |x| ≥ 0 ∀x ∈ R (ii) |xy| = |x||y| ∀x, y ∈ R (iii) |x+ y| ≤ |x|+ |y| (iv) |x+ y| ≥ ||x| − |y||

S 1.12: (Young’sche Ungleichung) ∀ε > 0, ∀x, y ∈ R gilt: 2|xy| ≤ εx2 + 1
εy
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Schranken Definition 1.13

(i) c ∈ R obere Schranke von A falls ∀a ∈ A : a ≤ c. A nach oben beschränkt falls eine obere Schranke für A existiert
(ii) c ∈ R untere Schranke von A falls ∀a ∈ A : a ≤ c. A nach unten beschränkt falls eine untere Schranke für A existiert
(iii) Element m ∈ R Maximum von A falls m ∈ A und m obere Schranke von A ist
(iv) Element m ∈ R Minimum von A falls m ∈ A und m untere Schranke von A ist

Supremum & Infimum Satz 1.16

(i) Die kleinste obere Schranke von einer nach oben beschränkten Menge A, gennant das Supremum von A, ist definiert
als c := sup(A). Es existiert nur falls die Menge nach oben beschränkt ist.

(ii) Die grösste untere Schranke von einer nach unten beschränkten Menge A, gennant das Infimum von A, ist definiert
als c := inf(A). Es existiert nur falls die Menge nach unten beschränkt ist.

Supremum & Infimum Korollar 1.17

Sei A ⊂ B ⊂ R
(1) Falls B nach oben beschränkt ist, gilt sup(A) ≤ sup(B) (2) Falls B nach unten beschränkt ist, gilt inf(B) ≤ inf(A)

1.3 Komplexe Zahlen

Operationen: i2 = −1 (NICHT i =
√
−1 da sonst 1 = −1). Komplexe Zahl zj = aj+bji. Addition, Subtraktion (a1±a2)+(b1±b2)i.

Multiplikation (a1a2 − b1b2) + (a1b2 + a2b1)i. Division
a1b1 + a2b2
b21 + b22

+
a2b1 − a1b2

b21b
2
2

i;

Teile: R(a+ bi) := a (Realteil), I(a+ bi) := b (Imaginärteil), |z| :=
√
a2 + b2 (modulus), a+ bi := a− bi (Komplexe Konjugation);

Polarkoordinaten: a+bi (Normalform), r ·eiϕ (Polarform). Transformation polar → normal: r ·cos(ϕ)+r ·sin(ϕ)i. Transformation

normal → polar: |z| · ei·arcsin(
b

|z| );

Fundamentalsatz der Algebra Satz 1.18

Sei n ≥ 1, n ∈ N und sei
P (z) = zn + an−1z

n−1 + . . .+ a0, aj ∈ C

Dann gibt es z1, . . . , zn ∈ C so dass
P (z) = (z − z1)(z − z2) . . . (z − zn)

Die Menge {z1, . . . , zn} und die Vielfachheit der Nullstellen zj sind eindeutig bestimmt.

Surjektivität Eine Funktion f : X → Y , ist Surjektiv, g.d.w. ∀y ∈ Y, ∃x ∈ X : f(x) = y (stetige Funktion)

Injektivität x1 ̸= x2 ⇒ f(x1) ̸= f(x2)
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2 Folgen und Reihen

2.1 Grenzwerte

D 2.5: Eine Folge (an)n≥1 heisst konvergent falls ∃l ∈ R s.d. ∀ε > 0 die Menge {n ∈ N∗ : an /∈]l − ε, l + ε[} endlich ist. Jede

konvergente Folge ist beschränkt. L 2.7: (an)n≥1 konvergiert gegen l = limn→∞ an ⇔ ∀ε > 0 ∃N ≥ 1 s.d. |an − l| < ε ∀n ≥ N

S 2.9: (an)n≥1 und (bn)n≥1 konvergent, a = limn→∞ an, b = limn→∞ bn. Dann gilt:

• (1) (an + bn)n≥1 konvergent und limn→∞(an + bn) =
a+ b;

• (2) (an · bn) konvergent limn→∞(an · bn) = a · b;

• (3) Falls zudem bn ̸= 0 ∀n ≥ 1 and b ̸= 0, dann gilt
(an ÷ bn)n≥1 konvergent und limn→∞(an÷ bn) = a÷ b;

• (4) Falls ∃K ≥ 1 mit an ≤ bn ∀n ≥ K ⇒ a ≤ b

2.2 Der Satz von Weierstrass

D 2.1: (an)n≥1 monoton wachsend (fallend) falls an ≤ an+1 (an ≥ an+1) ∀n ≥ 1

S 2.2: (Weierstrass) (an)n≥1 monoton wachsend (sinkend) und nach oben (unten) beschränkt konvergiert gegen limn→∞ an =

sup{an : n ≥ 1} (limn→∞ an = inf{an : n ≥ 1}), genannt das Supremum und Infimum Bsp 2.7: limn→∞
(
1 + 1

n

)n
= e

L 2.8: (Bernoulli Ungleichung) (1 + x)n ≥ 1 + n · x ∀n ∈ N, x > −1

2.3 Limes Superior und Limes Inferior

Für (an)n≥1 definieren wir zwei monotone Folgen bn = inf{ak : k ≥ n} und cn = sup{ak : k ≥ n}, dann ist bn ≤ bn+1 ∀n ≥ 1
und cn+1 ≤ cn ∀n ≥ 1, und beide Folgen sind beschränkt. Zudem konvergieren beide und es gilt lim infn→∞ an := limn→∞ bn und
lim supn→∞ an := limn→∞ cn. Ausserdem gilt: lim infn→∞ an ≤ lim supn→∞ an.

2.4 Cauchy Kriterium (Konvergenzkriterien)

L 2.1: (an)n≥1 konvergiert genau dann, wenn sie beschränkt ist und lim infn→∞ an = lim supn→∞ an

S 2.2: (Cauchy Kriterium) (an)n≥1 konvergent ⇔ ∀ε > 0 ∃N ≥ 1 so dass |an − am| ≤ ε ∀n,m ≥ N

2.5 Der Satz von Bolzano-Weierstrass

D 2.1: (Abgeschlossenes Intervall) Teilmenge I ⊆ R der Form wie unten zu sehen und der Länge L(I) = b − a (für (1)) oder
L(I) = +∞:

(1) [a, b]; a ≤ b; a, b ∈ R (2) [a,+∞[; a ∈ R (3) ]−∞, a]; a ∈ R (4) ]−∞,+∞[= R
Ein Intervall I ist abgeschlossen ⇔ Für jede konvergente Folge aus Elementen von I auch deren Grenzwerte in I enthalten sind

S 2.6: (Cauchy-Cantor) Sei I1 ⊇ . . . ⊇ In ⊇ In+1 ⊇ . . . eine Folge abgeschlossener Intervalle mit L(Ii) < +∞. Dann ist⋂∞
n≥1 In ̸= ∅. Falls zudem limn→∞ L(In) = 0, dann enthält die Menge genau einen Punkt. S 2.7: R ist nicht abzählbar

D 2.8: (Teilfolge von (an)n≥1) (bn)n≥1 wobei bn = al(n) und l(n) ≤ l(n+ 1) ∀n ≥ 1

S 2.9: (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge. Zudem: lim inf
n→∞

an ≤ lim
n→∞

bn ≤ lim sup
n→∞

an

2.6 Folgen in Räumen ausserhalb der Reellen Zahlen

D 2.1: Folgen in Rd und C werden gleich wie in R notiert

D 2.2: (an)n≥1 in Rd heisst konvergent falls ∃a ∈ Rd so dass ∀ε > 0 ∃N ≥ 1 mit ||an − a|| ≤ ε ∀n ≥ N

S 2.3: Sei b = (b1, . . . , bn) (Koordinaten von b, da b ein vektor ist). Dann ist limn→∞ an = b ⇔ limn→∞ an,j = bj ∀1 ≤ j ≤ d

S 2.7: (an)n≥1 konvergiert ⇔ (an)n≥1 ist eine Cauchy-Folge; Jede beschränkte Folge hat eine konvergierende Teilfolge

2.7 Reihen

D 2.1: (Konvergenz)
∑∞

k=1 ak konvergiert falls (Sn)n≥1 (Folge von Partialsummen) konvergiert, d.h.
∑∞

k=1 ak := limn→∞ Sn

Bsp 2.2: (Geometrische Reihe) Konvergiert gegen 1
1−q , und sn = a1 · 1−qn

1−q Bsp 2.3: (Harmonische Reihe)
∑∞

n=1
1
n divergiert

S 2.4: Seien
∑∞

k=1 ak und
∑∞

k=1 bk konvergent, α ∈ C. Dann ist:

1.

∞∑
k=1

(ak + bk) konvergent und

∞∑
k=1

(ak + bk) =

( ∞∑
k=1

ak

)
+

( ∞∑
k=1

bk

)

2.

∞∑
k=1

(α · ak) konvergent und
∞∑
k=1

(α · ak) = α ·

( ∞∑
k=1

ak

)
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S 2.5: (Cauchy Kriterium) Eine Reihe
∑∞

k=1 ak ist konvergent ⇔ ∀ε > 0 ∃N ≥ 1 mit |
∑m

k=n ak| ≤ ε ∀m ≥ n ≥ N

S 2.6:
∑∞

k=1 ak mit ak ≥ 0 ∀k ∈ N∗ konvergiert ⇔ (Sn)n≥1, Sn =
∑n

k=1 ak ist nach oben beschränkt

K 2.7: (Vergleichssatz)
∑∞

k=1 ak und
∑∞

k=1 ak mit 0 ≤ ak ≤ bk ∀k ≥ K (wo K ≥ 1), dann gelten:∑∞
k=1 bk konvergent =⇒

∑∞
k=1 ak konvergent

∑∞
k=1 ak divergent =⇒

∑∞
k=1 bk divergent

D 2.9: (Absolute Konvergent) Eine Reihe für welche
∑∞

k=1 |ak| konvergiert. Eine Anwendung des Cauchy Kriteriums liefert:

S 2.10: Eine absolut konvergente Reihe ist auch konvergent und |
∑∞

k=1 ak| ≤
∑∞

k=1 |ak|

Konvergenzkriterien
∑∞

a=0
1
ap konvergiert für n > 1

S 2.12: (Leibniz) Sei (an)n≥1 monoton fallend mit an ≥ 0 ∀n ≥ 1 und limn→∞ an = 0. Dann konvergiert S :=
∑∞

k=1(−1)k+1ak
und a1 − a2 ≤ S ≤ a1
Usage Um Konvergenz zu zeigen, beweise dass (an)n≥1 monoton fallend ist, an ≥ 0 und dass der Grenzwert 0 ist

D 2.15: (Umordnung) Eine Reihe
∑∞

k=1 a
′
k für eine

∑∞
k=1 ak falls eine Bijektion gibt ϕ so dass a′n = aϕ(n)

S 2.17: (Dirichlet) Falls
∑∞

k=1 ak absolut konvergiert, so konvergiert jede Umordnung der Reihe zum selben Grenzwert.

S 2.18: (Quotientenkriterium) Reihe s mit an ̸= 0 ∀n ≥ 1, s konvergiert absolut falls lim sup
n→∞

|an+1|
|an|

< 1. Falls lim inf
n→∞

|an+1|
|an|

> 1

divergiert sie. Falls einer der Grenzwerte gleich 1 ist, dann war der Test nicht eindeutig.

S 2.19: (Wurzelkriterium) Falls lim sup
n→∞

n
√
|an| < 1 konvergiert die Folge. Falls der Grenzwert grösser als eins ist, divergiert sie

K 2.20: (Konvergenzradius) Eine Potenzreihe der Form
∑∞

k=0 ckz
k konvergiert absolut für alle |z| < ρ und divergiert für alle

|z| > ρ. Sei l = lim supn→∞
k
√
|ck|, dann ist ρ =

{
+∞ falls l = 0
1
l falls l > 0

. Der Konvergenzradius ist dann definiert durch ρ falls ρ ̸= ∞

Doppelreihen

D 2.23: Für eine Doppelreihe
∑∞

i,j≥0 aij ,
∑∞

k=0 bk ist eine lineare Anordnung falls eine Bijektion σ existiert s.d. bk = aσ(k)

S 2.24: (Cauchy) Wir nehmen an, ∃B ≥ 0 s.d.

m∑
i=0

m∑
j=0

|aij | ≤ B ∀m ≥ 0. Dann gilt: Si :=

∞∑
j=0

aij ∀i ≥ 0 und Uj :=

∞∑
i=0

aij j ≥ 0 konvergieren absolute, sowie

∞∑
i=0

Si und

∞∑
j=0

Uj und es gilt:

∞∑
i=0

Si =

∞∑
j=0

Uj .

Jede lineare Anordnung konvergiert absolut mit demselben Grenzwert.

D 2.25: (Cauchy Produkt)

∞∑
n=0

 n∑
j=0

an−jbj

 = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + . . . für zwei Folgen

∞∑
i=0

ai,

∞∑
j=0

bj

S 2.27: Falls zwei Reihen absolut konvergieren, so knovergiert auch ihr Cauchy Produkt und es besteht aus den ausmultiplizierten
Termen der zwei Reihen.

S 2.28: Sei fn eine Folge. Wir nehmen an, dass:

• f(j) := limn→∞ fn(j) existiert ∀j ∈ N

• ∃g s.d. |fn(j)| ≤ g(j) ∀j, n ≥ 0 und
∑∞

j=0 g(j) konvergiert
Dann folgt

∞∑
j=0

f(j) = lim
n→∞

∞∑
j=0

fn(j)

K 2.29: Für jedes z ∈ C konvergiert die Folge und es gilt lim
n→∞

(
1 +

z

n

)n
= exp(z) wo exp(z) := 1 + z + z2

2! +
z3

3! + . . .
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3 Stetige Funktionen

3.1 Reellwertige Funktionen

D 3.1: (Beschränkung) Sei f ∈ RD, wobei RD die Menge aller Funktionen f : D → R ist, d.h. RD ist ein Vektorraum
• f ist nach oben beschränkt , falls f(D) ⊆ R nach oben beschränkt ist.
• f ist nach unten beschränkt , falls f(D) ⊆ R nach unten beschränkt ist.
• f ist beschränkt falls f(D) ⊆ R beschränkt ist.

D 3.2: (Monotonie) Falls D ⊆ R gibt es die folgenden Monotoniebegriffe:
• monoton wachsend ∀x, y ∈ D x ≤ y ⇒ f(x) ≤ f(y)
• streng monoton wachsend , falls ∀x, y ∈ D x < y ⇒ f(x) < f(y)
• monoton fallend , falls ∀x, y ∈ D x ≤ y ⇒ f(x) ≥ f(y)
• streng monoton fallend , falls ∀x, y ∈ D x < y ⇒ f(x) > f(y)
• monoton , falls f monoton wachsend oder monoton fallend ist
• streng monoton , falls f streng monoton machsend oder streng monoton fallend ist

3.2 Stetigkeit

Intuition: Eine stetige Funktion kann ohne den Stift zu heben gezeichnet werden.

D 3.1: (Stetigkeit von f in x0) Falls für jedes ε > 0 ein δ existiert, s.d. |x− x0| < δ ⇒ |f(x)− f(x0)| < ε D 3.2: (Stetigkeit) f

stetig falls f in allen Punkten von D stetig ist S 3.4: f ist stetig in x0 ⇐⇒ für (an)n≥1 limn→∞ an = x0 ⇒ f(an) = f(x0)

K 3.5: Seien f , g stetig in x0, dann gilt f + g, λ · f , f · g, f ◦ g sind stetig in x0 und falls g(x0) ̸= 0, ist f
g stetig in x0 für

f
g : D ∩ {x ∈ D : g(x) ̸= 0} → R

D 3.6: (Polynomiale Funktion) P (x) = anx
n + . . .+ a0, falls an ̸= 0, deg(P ) = n (Grad von P ) K 3.7: Sie sind stetig auf ganz

R K 3.8: P,Q pol. funk. auf R mit Q ̸= 0, wobei x1, . . . , xm die Nullstellen von Q sind. Dann gilt: P
Q : R\{x1, . . . , xm} → R ist

stetig

3.3 Zwischenwertsatz

S 3.1: Sei I ⊆ R ein Intervall, f : I → R eine stetige Funktion und a, b ∈ I. Für jedes c zwischen f(a) und f(b) existiert ein z

zwischen a und b mit f(z) = c K 3.2: Sei P ein Polynom mit deg(P ) = n, n ungerade. Dann hat P mind. eine Nullstelle in R

3.4 Min-Max-Satz

D 3.2: (Kompaktes Intervall) falls das Intervall I von der Form I = [a, b], a ≤ b ist L 3.3: f, g stetig in x0. Dann gilt: |f |,
max(f, g) und min(f, g) sind stetig in x0 (min(f, g) ist das Minimum der beiden Funktionen für jedes x) L 3.4: (xn)n≥1 konvergente

Reihe in R mit lim
n→∞

xn ∈ R und a ≤ b. Falls {xn : n ≥ 1} ⊆ [a, b] dann gilt lim
n→∞

xn ∈ [a, b] S 3.5: Sei f stetig auf dem kompakten

Intervall I. Dann gilt ∃u ∈ I und ∃v ∈ I mit f(u) ≤ f(x) ≤ f(v) ∀x ∈ I. f ist beschränkt.

3.5 Satz über die Umkehrabbildung

S 3.1: Seien D1, D2 ⊆ R, f : D1 → D2, g : D2 → R, x0 ∈ D1. Falls f stetig in x0, g auf f(x0) dann f ◦ g : D1 → R stetig in x0

K 3.2: Falls in Satz 3.5.1 f stetig auf D1 und g auf D2, dann ist g ◦ f stetig auf D1

S 3.3: (Satz über Umkehrabbildung) Sei f : I → R stetig, streng monoton und sei I ⊆ R ein Intervall. Dann gilt: J := f(I) ⊆ R
ist ein Intervall und f−1 : J → I ist stetig und streng monoton.

3.6 Reellwertige Exponentialfunktion

Die Exponentialfunktion exp : C → C wird normalerweise durch eine auf ganz C konvergente Potenzreihe definiert: exp(z) :=

∞∑
n=0

zn

n!
,

hier für z ∈ R. exp ist bijektiv, streng monoton wachsend, glatt und stetig. exp−1(x) = ln(x)

S 3.1: exp : R →]0,+∞[ ist streng monoton wachsend, stetig und surjektiv K 3.2: exp(x) > 0 ∀x ∈ R
K 3.3: exp(z) > exp(y) ∀z > y K 3.4: exp(x) ≥ 1+x ∀x ∈ R K 3.5: ln :]0,+∞[→ R ist streng monoton wachsend, stetig und

bijektiv. Es gilt ln(a · b) = ln(a) + ln(b) ∀a, b ∈]0,+∞[. Dies ist die Umkehrabbildung von exp K 3.6:

1. Für a > 0 ]0,+∞[ → ]0,+∞[ ist x 7→ xa eine stetige, streng monoton wachsende Bijektion.
2. Für a < 0 ]0,+∞[ → ]0,+∞[ ist x 7→ xa eine stetige, streng monoton fallende Bijektion.

3. ln(xa) = a ln(x) ∀a ∈ R, ∀x > 0 4. xa · xb = xa+b ∀a, b ∈ R, ∀x > 0 5. (xa)b = xa·b ∀a, b ∈ R, ∀x > 0

5



3.7 Konvergenz von Funktionenfolgen

D 3.1: (Punktweise Konvergenz) (fn)n≥1 konvergiert punktweise gegen eine Funktion f : D → R falls für alle x ∈ D f(x) =
limn→∞ fn(x)

D 3.3: (Weierstrass) Folge fn konv. gleichmässig in D gegen f falls ∀ε > 0 ∃N ≥ 1 s.d. ∀n ≥ N, ∀x ∈ D : |fn(x)− f(x)| < ε

S 3.4: fn ist eine Folge von (in D) stetigen Funktionen die in D gleichmässig konvergieren. Dann ist f (in D) stetig

D 3.5: (Gleichmässige Konvergenz von (fn)n≥1)) fn falls ∀x ∈ D f(x) := limn→∞ fn(x) existiert und (fn)n≥1 gleichmässig gegen
f konvergiert

K 3.6: fn konvergiert gleichmässig in D ⇐⇒ ∀ε > 0 ∃N ≥ 1 so dass ∀n,m ≥ N, ∀x ∈ D |fn(x)− fm(x)| < ε

K 3.7: Falls fn eine gleichmässig konvergierende Funktionenfolge ist, dann ist f(x) := limn→∞ fn(x) stetig

D 3.8:

∞∑
k=0

fk(x) konvergiert gleichmässig, falls Sn(x) :=

n∑
k=0

fk(x) gleichmässig konvergiert S 3.9: Angenommen, dass |fn(x)| ≤

cn ∀x ∈ D und dass

∞∑
n=0

cn konvergiert. Dann konvergiert
∑fn(x)

n=0 gleichmässig in D und f(x) :=
∑∞

n=0 fn(x) ist stetig in D

D 3.10: (Konvergenzradius) Siehe K 2.7.19 S 3.11: Eine Potenzreihe konvergiert gleichmässig auf ]− r, r[ wobei 0 ≤ r < ρ

3.8 Trigonometrische Funktionen

S 3.1: sin : R → R und cos : R → R sind stetige Funktionen S 3.2:

1. exp iz = cos(z) + i sin(z) ∀z ∈ C
2. cos(z) = cos(−z) and sin(−z) = − sin(z) ∀z ∈ C

3. sin(z) =
eiz − e−iz

2i
; cos(z) =

eiz + eiz

2

4. sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
cos(z + w) = cos(z) cos(w)− sin(z) sin(w)

5. cos(z)2 + sin(z)2 = 1 z ∈ C

K 3.3: sin(2z) = 2 sin(z) cos(z) and cos(2z) = cos(z)2 − sin(z)2

3.9 Pie (delicious)

S 3.1: Die Sinusfunktion hat mindestens eine Nullstelle auf ]0,+∞[ und π := inf{t > 0 : sin(t) = 0}. Dann gilt sin(π) = 0, π ∈
]2, 4[; ∀x ∈]0, π[: sin(x) > 0 and e

iπ
2 = i K 3.2: x ≥ sin(x) ≥ x− x3

3! ∀0 ≤ 0 ≤
√
6 K 3.3:

1. eiπ = −1, e2iπ = 1
2. sin

(
x+ π

2

)
, cos

(
x+ π

2

)
= − sin(x) ∀x ∈ R

3. sin(x+ π) = − sin(x), sin(x+ 2π) = sin(x) ∀x ∈ R
4. cos(x+ π) = − cos(x), cos(x+ 2π) = cos(x) ∀x ∈ R

5. Nullstellen von Sinus = {k · π : k ∈ Z}
sin(x) > 0 ∀x ∈]2kπ, (2k + 1)π[, k ∈ Z sin(x) >
0 ∀x ∈](2k + 1)π, (2k + 2)π[, k ∈ Z

6. NullStellen von Cosinus = {π
2 · k · π : k ∈ Z}

cos(x) > 0 ∀x ∈] − π
2 + 2kπ,−π

2 + (2k + 1)π[, k ∈ Z
cos(x) > 0 ∀x ∈]− π

2+(2k+1)π,−π
2+(2k+2)π[, k ∈ Z

3.10 Grenzwerte von Funktionen

D 3.1: (Häufungspunkt): x0 ∈ R von D falls ∀δ > 0 (]x0 − δ, x0 + δ[\{x0}) ∩D ̸= ∅
D 3.3: A ∈ R ist der Grenzwert von f(x) für x → x0 bezeichnet limx→x0 f(x) = A, wobei x0 ein Häufungspunkt ist, falls:

∀ε ∃δ > 0 s.t. ∀x ∈ D ∩ (]x0 − δ, x0 + δ[\{x0}) : |f(x)−A| < ε

S 3.7: Seien D,E ⊆ R, xr ein Häufungspunkt von D und f : D → E eine Funktion. Angenommen, dass y0 := limx→x0
existiert

und y0 ∈ E. Falls g : E → R in y0 stetig ist, dann gilt limx→x0
g(f(x)) = g(y0)

Links- / Rechtsseitige Grenzwerte

Wird gebraucht, wenn Funktionen Polstellen haben. Wir nähhern uns der Polstelle von beiden Seiten an, um sie zu evaluieren.
Anders als an der Kanti notieren wir sie mit x → x−

0 anstelle von mit x ↑ x0
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4 Differenzierbare Funktionen

4.1 Ableiten

D 4.1: (Differenzierbarkeit) f ist differenzierbar in x0 falls f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

h→0

f(x0 + h)− f(x0)

h
existiert.

S 4.3: Sei x0 Häufungspunkt von D: f differenzierbar in x0 ⇐⇒ ∃c ∈ R und r : D → R mit (falls es zutrifft, ist c = f ′(x0)
eindeutig bestimmt):

f(x) = f(x0) + c(x− x0) + r(x)(x− x0) sowie auch r(x0) = 0 und r ist stetig in x0

S 4.4: f differenzierbar in x0 ⇔ ∃ϕ : D → R stetig in x = und f(x) = f(x0) + ϕ(x)(x − x0) ∀x ∈ D. Dann ist ϕ(x0) = f ′(x0)

K 4.5: x0 ∈ D Häufungspunkt von D. Falls f differenzierbar in x0, f stetig in x0 D 4.7: f ist auf ganz D differenzierbar, falls f
für jeden Häufungspunkt x0 in x0 differenzierbar ist

S 4.10: (Grundregeln vom Ableiten) Let f, g be functions differentiable in x0

• (f + g)′(x0) = f ′(x0) + g′(x0)
• (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g

′(x0)
• falls g(x0) ̸= 0,

(
f

g

)′

(x0) =
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2

S 4.12: (Kettenregel) x0 ∈ D Häufungspunkt, f : D → E differenzierbar in x0 s.d. y0 := f(x0) ∈ E ein Häufungspunkt von E
ist und sei g : E → R differenzierbar in y0. Dann gilt g ◦ f : D → R differenzierbar in x0 und (g ◦ f)′(x0) = g′(f(x0)) · f ′(x0)

K 4.13: Sei f : D → E eine in x0 (Häufungspunkt) differenzierbare Bijektion f ′(x0) ̸= 0 und zudem sei f−1 stetig in y0 = f(x0).

Dann ist y0 ein Häufungspunkt von E, f−1 differenzierbar in y0 und (f−1)′(y0) =
1

f ′(x0)

4.2 Erste Ableitung: Wichtige Sätze

D 4.1: (1) f hat ein Maximum in x0 falls ∃δ > 0 s.d. f(x) ≤ f(x0) ∀x ∈]x0 − δ, x0 + δ[ ∩ D (2) f hat ein Minimum in x0 falls
∃δ > 0 s.d. f(x) ≥ f(x0) ∀x ∈]x0 − δ, x0 + δ[ ∩ D (3) f hat ein lokales Extremum in x0 fall es entweder ein max oder min ist

S 4.2: Angenommen, f is in x0 differenzierbar f ′(x0) = 0, dann existiert in x0 ein Extremum

1. Falls f ′(x0) > 0 ∃δ > 0 s.d. f(x) > f(x0) ∀x ∈
]x0, x0 + δ[ und f(x) < f(x0) ∀x ∈]x0 − δ, x0[

2. Falls f ′(x0) < 0 ∃δ > 0 s.d. f(x) < f(x0) ∀x ∈
]x0, x0 + δ[ und f(x) > f(x0) ∀x ∈]x0 − δ, x0[

S 4.3: Sei f : [a, b] → R stetig und differenzierbar in ]a, b[. Falls f(a) = f(b), ∃ξ ∈]a, b[ mit f ′(ξ) = 0

S 4.4: Sei f wie oben, dann ∃ξ ∈]a, b[ s.t. f(b)− f(a) = f ′(ξ)(b− a) K 4.5: Sei f, g wie oben (I = [a, b]), dann gilt:

1. f ′(ξ) = 0 ∀ξ ∈]a, b[ ⇒ f konstant
2. f ′(ξ) = g′(ξ) ∀ξ ∈]a, b[ ⇒ ∃c ∈ R mit f(x) = g(x) +

c ∀x ∈ [a, b]
3. f ′(ξ) ≥ 0 ∀ξ ∈]a, b[ ⇒ f monoton wachsend auf I
4. f ′(ξ) > 0 ∀ξ ∈]a, b[ ⇒ f strikt mon. wachsend auf I

5. f ′(ξ) ≤ 0 ∀ξ ∈]a, b[ ⇒ f monoton fallend auf I
6. f ′(ξ) < 0 ∀ξ ∈]a, b[ ⇒ f strikt mon. fallend auf I
7. Falls ∃M ≥ 0 s.d. |f ′(ξ)| ≤ M ∀ξ ∈]a, b[, dann gilt

∀x1, x2 ∈ [a, b] |f(x1)− f(x2)| ≤ M |x1 − x2|

S 4.10: f, g, ξ Wie vorhin definiert. Dann gilt g′(ξ)(f(b) − f(a)) = f ′(ξ)(g(b) − g(a)). If g′(x) ̸= 0 x ∈]a, b[, g(a) ̸= g(b) and
f(b)− f(a)

g(b)− g(a)
=

f ′(ξ)

g′(ξ)
S 4.11: (L’Hospital) f, g wie vorhin, mit g′(x) ̸= 0 ∀x ∈]a, b[. Falls lim

x→b−
f(x) = 0, lim

x→b−
g(x) = 0 und

λ := lim
x→b−

f ′(x)

g′(x)
existiert, folgt lim

x→b−

f(x)

g(x)
= lim

x→b−

f ′(x)

g′(x)
D 4.14: f konvex auf I falls ∀x ≤ y ∈ I und λ ∈ [0, 1] f(λx+(1−λ)y) ≤

λf(x) + (1− λ)f(y). Streng konvex falls jedes < durch ≤ ersetzt wird S 4.17: f (wie immer) (streng) konvex ⇐⇒ f ′ (streng)

monoton wachsend. K 4.18: Falls f ′′ existiert ist f (streng) konvex falls f ′′ ≥ 0 (oder f ′′ > 0) auf ]a, b[

4.3 Höhere Ableitungen

Höhere Ableitungen Definition 4.1

1. Für n ≥ 2, f n-mal differenzierbar in D falls f (n−1) in D differenzierbar ist. f (n) := (f (n−1))′, n-te Ableitung von f
2. f ist n-mal stetig differenzierbar in D falls f (n) existiert und ist stetig in D
3. f ist glatt in D falls ∀n ≥ 1 f (n) existiert.

S 4.3: (1) (f + g)(n) = f (n) + g(n), (2) (f · g)(n) =
∑n

k=0

(
n
k

)
f (k)g(n−k) (binomial expansion), für f, g n-mal differenzierbar

S 4.5: f, g wie oben; Falls g(x) ̸= 0 ∀x ∈ D, dann ist
f

g
n-mal in D differenzierbar S 4.6: Seien E,D ⊆ R für die jeder Punkt ein

Häufungspunkt ist und f : D → E und g : E → D, beide n-mal differenzierbar. Dann ist (g ◦ f)(n)(x) =
∑n

k=1 An,k(x)(g
(k) ◦ f)(x)

wobei An,k ein Polynom in den Funktionen f ′, f (2), . . . , f (n+1−k) ist
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4.4 Potenzreihen und Taylor Approximation

S 4.1: Angenommen, dass (fn)n≥1 (für fn und f ′
n stetig differenzierbar) und (f ′

n)n≥1 gleichmässig auf ]a, b[ konvergieren für
f :]a, b[→ R mit f := lim

n→∞
fn und p := lim

n→∞
f ′
n. Dann ist f stetig differenzierbar und f ′ = p

S 4.2: Potenzreihe

∞∑
k=0

ckx
k mit ρ > 0, f(x) =

∞∑
k=0

ck(x− x0)
k auf ]x0 − ρ, x0 + ρ[ differenzierbar und f ′(x) =

∞∑
k=1

kck(x− x0)
k−1

K 4.3: Wie in 4.4.1, f glatt auf einem konvexen Invervall und f (j)(x)

∞∑
k=j

ck
k!

(k − j)!
(x− x0)

k−j . Insbesondere, cj =
f (j)(x0)

j!

S 4.5: f stetig, ∃f (n+1). Für jedes a < x ≤ b ∃ξ ∈]a, x[ mit f(x)

n∑
k=0

f (k)(a)

k!
(x − a)k +

f (n+1)(ξ)

(n+ 1)!
(x − a)n+1 K 4.6: (Taylor

Approximation) Gleich wie oben, aber f : [c, d] → R anstelle von f : [a, b] → R und c < a < d und ξ zwischen x und a.

K 4.7: a < x0 < b und f wie zuvor, angenommen, dass f ′(x0) = f (2)(x0) = . . . = f (n)(x0) = 0. Dann gilt:

1. Falls n gerade und x0 lokales Extremum, f (n+1)(x0) = 0

2. Falls n ungerade und f (n+1)(x0) > 0, x0 strikte lokale Mi-
nimalstelle

3. Falls n ungerade und f (n+1)(x0) < 0, x0 strikte lokale Ma-
ximalstelle

K 4.8: f 2-mal differenzierbar und a < x0 < b, wir nehmen an, dass f ′(x0) = 0

1. f (2)(x0) > 0, x0 strikte lokale Minimalstelle 2. f (2)(x0) < 0, x0 strikte lokale Maximalstelle

4.5 Exercise Help

Häufige Grenzwerte Bekannte Taylorreihen
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5 Riemann Integral

5.1 Definition und Integrabilitätskriterien

D 5.1: (Partition) endliche Teilmenge P ⊂ I wo I = [a, b] und {a, b} ⊆ P

Untersumme: s(f, P ) :=

n∑
i=1

fiδi, fi = inf
xi−1≤x≤xi

f(x), Obersumme: S(f, P ) :=

n∑
i=1

fiδi, fi = sup
xi−1≤x≤xi

f(x), δi sub-interval

L 5.2: Sei P ′ eine Verfeinerung von P , dann s(f, P ) ≤ s(f, P ′) ≤ S(f, P ′) ≤ S(f, P ); für beliebige P1, P2, s(f, P1) ≤ S(f, P2)

D 5.3: f beschränkt ist integrierbar falls s(f) = S(f) und das Integral ist

∫ b

a

f(x) dx

S 5.4: f beschränkt, integrierbar ⇐⇒ ∀ε > 0 ∃P ∈ P(I) mit S(f, P )− s(f, P ) ≤ ε wobei P(I) alle Paritionen von I ist

S 5.9: f integrierbar ⇐⇒ ∀ε > 0 ∃δ > 0 s.d. ∀P ∈ Pδ(I), S(f, P )− s(f, P ) < ε, wobei Pδ(I) die Menge von P wofür max
1≤i≤n

δi ≤ δ

K 5.10: f integrierbar mit A :=
∫ b

a
f(x) dx ⇐⇒ ∀ε > 0 ∃δ > 0 s.d. ∀P ∈ P(I) mit δ(P ) < δ und ξ1, . . . , ξn mit ξi ∈ [xi− 1, xi]

und P = {x0, . . . , xn},

∣∣∣∣∣A−
n∑

i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣ < ε

5.2 Integrierbare Funktionen

S 5.1: f, g beschränkt, integrierbar und λ ∈ R. Dann gilt f + g, λ · f , f · g, |f |, max(f, g), min(f, g) und f
g (falls |g(x)| ≥ β >

0 ∀x ∈ [a, b] alle integrierbar K 5.3: Seien P,Q Polynome, Q keine Nullstellen auf [a, b], dann: [a, b] → R und x 7→ P (x)
Q(x) int.

D 5.4: (Gleichmässige Stetigkeit) falls ∀ε > 0 ∃δ > 0 ∀x, y ∈ D : |x − y| < δ =⇒ |f(x) − f(y)| < ε S 5.6: f stetig auf

kompaktem Intervall I = [a, b] =⇒ f ist gleichmässig stetig auf I S 5.7: f stetig =⇒ f integrierbar S 5.8: f monoton =⇒ f

integrierbar S 5.10: I ⊂ R kompaktes Intervall mit I = [a, b] und f1, f2 beschränkt, integrierbar und λ1, λ2 ∈ R.

Dann gilt:

∫ b

a

(λ1f1(x) + λ2 + f2(x)) dx = λ1

∫ b

a

f1(x) dx+ λ2

∫ b

a

f2(x) dx

5.3 Ungleichungen und Mittelwertsatz

S 5.1: f, g beschränkt, integrierbar und f(x) ≤ g(x)∀x ∈ [a, b], dann

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx K 5.2: falls f beschränkt,

integrierbar,

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx S 5.3: Sei f, g beschränkt, integrierbar, dann

∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤
√∫ b

a
f2(x) dx ·√∫ b

a
g2(x) dx

S 5.4: (Mittelwertsatz) f stetig. Dann gilt ∃ξ ∈ [a, b] s.d.

∫ b

a

dx = f(ξ)(b−a) S 5.6: Sei f stetig, g beschränkt und integrierbar

mit g(x) ≥ 0 ∀x ∈ [a, b]. Dann gilt ∃ξ ∈ [a, b] s.d.

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) d

5.4 Fundamentalsatz der Differentialrechnung

Erster Fundamentalsatz Satz 5.1

Sei a < b und f : [a, b] → R stetig. Die Funktion

F (x) =

∫ x

a

f(t) dt, a ≤ x ≤ b

ist differenzierbar in [a, b] und F ′(x) = f(x) ∀x ∈ [a, b]

Beweis: Intervall aufteilen:
∫ x0

a
f(t) dt +

∫ x

x0
f(t) dt =

∫ x

a
f(t) dt, also F (x) − F (x0) =

∫ x

x0
f(t) dt. Mithilfe des Mittelwertsatzes

erhalten wir
∫ x

x0
f(t) dt = f(ξ)(x − x0) und für x ̸= x0 ergibt sich F (x)−F (x0)

x−x0
= f(ξ) und da ξ zwischen x0 und x liegt und da f

stetig ist, limx→x0

F (x)−F (x0)
x−x0

= f(x0) □

D 5.2: (Stammfunktion) F für f falls F differenzierbar in [a, b] ist und F ′ = f in [a, b]

Zweiter Fundamentalsatz Satz 5.3

f wie in 5.4.1. Dann existiert eine Stammfunktion F von f die eindeutig bestimmt ist bist auf die Integrationskonstante und∫ b

a

f(x) dx = F (a)− F (b)
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Beweis: Existenz von F gegeben dur 5.4.1. Falls F1 und F2 Stammfunktionen von f sind, dann F ′
1 − F ′

2 = f − f = 0, i.e.

(F1 − F2)
′ = 0. Mithilfe von 4.2.5 (1) erhalten wir, dass F1 − F2 konstant ist. Wir haben F (x) = C +

∫ x

a
f(t) dt, wobei C eine

beliebige Konstante ist. Insbesondere, F (b) = C +
∫ b

a
f(t) dt, F (a) = C und deshalb F (b)−F (a) = C +

∫ b

a
f(t) dt−C =

∫ b

a
f(t) dt

S 5.5: (Partielle Integration)

∫ b

a

f(x)g′(x) dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x)g(x) dx. Aufgepasst mit Zyklen

S 5.6: (Integration durch Substitution) ϕ stetig und differenzierbar. Dann gilt

∫ b

a

f(ϕ(t))ϕ′(t) dt =

∫ ϕ((b))

ϕ(a)

f(x) dx

Um das Obige zu Nutzen muss die innere Funktion passend gewählt, abgeleitet und rücksubstituiert werden um eine einfacher

integrable Funktion zu erhalten. K 5.9: I ⊆ R und f : I → R stetig

1. Sei a, b, c ∈ R s.d. das abgeschlossenes Intervall mit
Endpunkten a+ c, b+ c in I enthalten ist. Dann gilt∫ b+c

a+c

f(x) dx =

∫ b

a

f(t+ c) dt

2. Sei a, b, c ∈ R, c ̸= 0 s.d. das abgeschlossene Intervall
mit Endpunkten ac, b in I enthalten ist. Dann gilt

1

c

∫ bc

ac

f(x) dx =

∫ b

a

f(ct) dt

5.5 Integration einer konvergierenden Reihe

S 5.1: Sei fn : [a, b] → R eine Folge von beschränkten, integrierbaren Funktionen die gleichmässig gegen f konvergieren. Dann ist f

beschränkt integrierbar und limn→∞
∫ b

a
fn(x) dx =

∫ b

a
f(x) dx K 5.2: fn s.d. die Reihe konvergiert. Dann ist

∑∞
n=0

∫ b

a
fn(x) dx =∫ b

a
(
∑∞

n=0 fn(x)) dx

K 5.3: f(x) =
∑∞

n=0 xkx
k mit ρ > 0. Dann ist ∀0 ≤ r < ρ, f integrierbar auf [−r, r] und ∀x ∈]−ρ, ρ[,

∫ x

0
f(t) dt =

∑∞
n=0

cn
n+1x

n+1

5.6 Euler-McLaurin Summationsformel

D 5.1: ∀k ≥ 0, das k-te Bernoulli Polynom Bk(x) = k!Pk(x), wobei P
′
k = Pk−1 ∀k ≥ 1 und

∫ 1

0
Pk(x) dx = 0 ∀k ≥ 1 D 5.2: Sei

B0 = 1. ∀k ≥ 2 Bk−1 ist rekursiv durch
∑k−1

i=0

(
k
i

)
Bi = 0 definiert S 5.3: (McLaurin Reihe) Bk(x) =

∑k
i=0

(
k
i

)
Bix

k−i S 5.5: f

k mal stetig differenzierbar, k ≥ 1. Dann gilt für B̃k(x) =

{
Bk(x) für 0 ≤ x < 1

Bk(x− n) für n ≤ x ≤ n+ 1 wobei n ≥ 1
dass

1. Für k = 1:
∑n

i=1 f(i) =
∫ n

0
f(x) dx+ 1

2 (f(n)− f(0)) +
∫ n

0
B̃1(x)f

′(x) dx unten: R̃k = (−1)k−1

k!

∫ n

0
B̃k(x)f

(k)(x) dx

2. Für k ≥ 2:

n∑
i=1

f(i) =

∫ n

0

f(x) dx+
1

2
(f(n)−f(0))+

k∑
j=2

(−1)jBj

j!
(f (j−1)(n)−f (j−1)(0))+R̃k, R̃k =

k!∑
(−1)(k−1)

∫ n

0

B̃1(x)f
(k)(x) dx

5.7 Stirling’sche Formel

S 5.1: n! =

√
2πnnn

en
· exp

(
1

12n
+R3(n)

)
, |R3(n)| ≤

√
3

216 · 1
n2 ∀n ≥ 1 L 5.2: ∀m ≥ n+ 1 ≥ 1 : |R3(m,n)| ≤

√
3

216

(
1
n2 − 1

m2

)
5.8 Uneigentliche Integrale

D 5.1: f beschränkt und integrierbar auf [a, b]. Falls lim
b→∞

∫ b

a

f(x) dx existiert, wir notieren als
∫∞
a

f(x) dx und sagen f ist

integrierbar auf [a,+∞[ L 5.3: f : [a,∞[→ R beschränkt und integrierbar auf [a, b]∀b > 0. Falls |f(x) ≤ g(x) ∀x ≥ a und g(x)

integrierbar auf [a,∞[, dann ist f integrierbar auf [a,∞[. Falls 0 ≤ g(x) ≤ f(x) und
∫∞
a

g(x) dx divergiert, wie auch
∫∞
a

f(x) dx

S 5.5: f : [1,∞[→ [0,∞[ monoton fallend.
∑∞

n=1 f(n) konvergiert ⇔
∫∞
1

f(x) dx konvergiert D 5.9: Falls f :]a, b] ist beschränkt

und integrierbar auf [a+ε, b], ε > 0, aber nicht zwingend auf ]a, b], dann ist f integrierbar falls limε→0+
∫ b

a+ε
f(x) dx existiert, dann

gennant
∫ b

a
f(x) dx

D 5.12: (Gamma function) Für s > 0 definieren wir Γ(s) :=
∫∞
0

e−xxs−1 dx

S 5.13: (1) Γ(s) erfüllt Γ(1) = 1, Γ(s+ 1) = sΓ(s) ∀s > 0 und Γ(λx+ (1− λ)y) ≤ Γ(x)λΓ(y)1−λ ∀x, y > 0, ∀0 ≤ λ ≤ 1

(2) Γ(s) einzige Funktion ]0,∞[ → ]0,∞[ die obige Voraussetzungen erfüllt. Ausserdem: Γ(x) = lim
n→∞

n!nx

x(x+ 1) . . . (x+ n)
∀x > 0

S 5.14: Sei p, q > 1 mit 1
p + 1

q = 1, für alle f, g : [a, b] → R stetig, dann gilt
∫ b

a
|f(x)g(x)| dx ≤ ||f ||p||g||q

5.9 Partialbruchzerlegung

Wird für rationale Polynom-Funktionen genutzt. Man started mit Aufteilen des Bruchs into (meistens) faktorisierte Teile. Suche
Nullstellen. Nenner in gefundene Teile unterteilen, z.B. a

x−4 + b
x+2 , dann alle Brüche auf denselben Nenner bringen. Dann muss

p(x) (der Zähler) des ursprünglichen Bruch gleich dem des neuen Bruchs entsprechen, also Lineares Gleichungssystem zum Finden
der Koeffizienten nutzen. Den Zähler in die Form von Polynomen bringen, also z.B. (a+ b) · x+ (2a− 4b), dann ist das SLE∣∣∣∣ 2 = a+ b

−4 = 2a− b

∣∣∣∣⇔ a =
2

3
, b =

4

3
für unser rationales Polynom

2x− 4

x2 − 2x− 8

Wir können denn die Koeffizienten in den aufgeteilten Bruch einsetzen (hier a
x−4 . . .) und wir können normal integrieren
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6 Tabelle von Ableitungen und Stammfunktionen

Stammfunktion Funktion Ableitung

xn+1

n+ 1
xn n · xn−1

ln |x| 1

x
= x−1 −x−2 = − 1

x2

2
3x

3
2

√
x = x

1
2

1

2 ·
√
x

n
n+1x

1
n+1 n

√
x = x

1
n 1

nx
1
n−1

ex ex ex

exp(x) exp(x) exp(x)
1

a·(n+1) (ax+ b)n+1 (ax+ b)n n · (ax+ b)n−1 · a
x · (ln |x| − 1) ln(x) 1

x = x−1

1

ln(a)
· ax ax ax · ln(a)

x
ln(a) · (ln |x| − 1) loga |x|

1

x · ln(a)

− cos(x) sin(x) cos(x)
sin(x) cos(x) − sin(x)

− ln | cos(x)| tan(x)
1

cos2(x)

x · arcsin(x) +
√
1− x2 arcsin(x)

1√
1− x2

x · arccos(x)−
√
1− x2 arccos(x) − 1√

1− x2

x · arctan(x)− ln(x2 + 1)

2
arctan(x)

1

x2 + 1

ln | sin(x)| cot(x) − 1

sin2(x)
cosh(x) sinh(x) cosh(x)
sinh(x) cosh(x) sinh(x)

ln | cosh(x)| tanh(x)
1

cosh2(x)
arcsinh(x) 1√

1+x2

arccosh(x) 1√
x2−1

arctanh(x) 1
1−x2

Logarithmen

(Basiswechsel) loga(x) = ln(x)
ln(a) (Potenzen) loga(x

y) = y loga(x)

(Div, Mul) loga(x · (÷)y) = loga(x) + (−) loga(y)
loga(1) = 0 ∀a ∈ N

Partielle Integration Sollte sich ein unvermeidbarer Zyklus,

wo wir immer wieder denselben Integral erhalten, bilden, können
wir einfach das Integral zu beiden Seiten addieren und erhal-
ten so 2 mal das Integral auf der linken Seite und können dann
die partielle Integration auf der rechten Seite abschliessen und
schliesslich durch den Faktor auf der linken Seite dividieren, um
das Resultat zu erhalten.

Umkehrfunktion der Hyperbelfunktionen

• arcsinh(x) = ln
(
x+

√
x2 + 1

)
• arccosh(x) = ln

(
x+

√
x2 − 1

)
• arctanh(x) = 1

2 ln
(

1+x
1−x

)
Komplement-Trick

√
ax+ b−

√
cx+ d = ax+b−(cx+d)√

ax+b+
√
cx+d

Werte der trigonometrischen Funktionen

° rad sin(ξ) cos(ξ) tan(ξ)

0° 0 0 1 1

30° π
6

1
2

√
3
2

√
3
2

45° π
4

√
2
2

√
2
2 1

60° π
3

√
3
3

1
2

√
3

90° π
2 1 0 ∅

120° 2π
3

√
3
2 − 1

2 −
√
3

135° 3π
4

√
2
2 −

√
2
2 −1

150° 5π
6

1
2 −

√
3
2 −

√
3
2

180° π 0 −1 0

Trigonometrie cot(ξ) =
cos(ξ)

sin(ξ)
, tan(ξ) =

sin(ξ)

cos(ξ)

sinh(x) := ex−e−x

2 : R → R, cosh(x) := ex+e−x

2 : R → [1,∞],

cosh(x) := sinh(x)
cosh(x) =

ex−e−x

ex+e−x : R → [−1, 1]

1. cos(x) = cos(−x) und sin(−x) = − sin(x)

2. cos(π − x) = − cos(x) und sin(π − x) sin(x)

3. sin(x+ w) = sin(x) cos(w) + cos(x) sin(w)

4. cos(x+ w) = cos(x) cos(w)− sin(x) sin(w)

5. cos(x)2 + sin(x)2 = 1

6. sin(2x) = 2 sin(x) cos(x)

7. cos(2x) = cos(x)2 − sin(x)2

Weitere Ableitungen

F (x) f(x)

1
a ln |ax+ b| 1

ax+b
ax
c − ad−bc

c2 ln |cx+ d| a(cx+d)−c(ax+b)
(cx+d)2

x
2 f(x) +

a2

2 ln |x+ f(x)|
√
a2 + x2

x
2 f(x)−

a2

2 arcsin
(

x
|a|

) √
a2 − x2

x
2 f(x)−

a2

2 ln |x+ f(x)|
√
x2 − a2

ln(x+
√
x2 ± a2) 1√

x2±a2

arcsin
(

x
|a|

)
1√

x2−a2

1
a arctan

(
x
|a|

)
1

a2−x2

F (x) f(x)

− 1
a cos(ax+ b) sin(ax+ b)
1
a sin(ax+ b) cos(ax+ b)

xx xx · (1 + ln |x|)
(xx)x (xx)x · (x+ 2x ln |x|)
x(xx) x(xx) · (xx−1 + ln |x| · xx(1 + ln |x|))

1
2 (x− 1

2 sin(2x)) sin(x)2

1
2 (x+ 1

2 sin(2x)) cos(x)2
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