Introduction to Programming

Janis Hutz

Introduction to Programming

Janis Hutz
https://janishutz.com

September 20, 2025

1 EBNF 2
1.1 Rules. . . . o o e e e 2
1.2 Control forms 2

1.2.1 Sequence e e e e e e 2
1.2.2 DecCISION o o e e e 2
1.2.3 Repetition L e 3
1.2.4 Recursion e e e e e 3
1.3 Parenthesis e e e e e e e e 3
1.4 Special caracters L e e 3
1.5 Nomenclature & Notation e 4
1.5.1 Notation of derivation 4
1.5.2 Syntax vs. Semantics e 4
1.6 Graphical noatation of EBNF oo 4

2 Peculiarities of Java 5

3 Actually resonable stuff in Java 5

4 Tips & Tricks 7

5 Abstract class vs Interface 8

6 Maps, Lists & Sets 9
6.1 DMapS . . . o o e e e e 9
0.2 LiStS e 9
6.3 Sets . . .o s 9
6.4 Different implementations 9

7 Loop-Invariant 10

8 Mean things 10
8.1 In EBNTE 10
.2 Java e e 10

September 20, 2025

1/10

https://janishutz.com

Introduction to Programming Janis Hutz

1 EBNF
= Extended Backus Naur Form / Extended Backus Normal Form

e Can be used to describe automatic tests

1.1 Rules

EBNF-Rule Definition 1.1

A rule is described as follows
LHS <- RHS

where LHS is the left hand side, which gives the name of the rule. That name is usually written in italic
or inside <...>. The RHS is the description of the rule using elements, which are literals, names of other
EBNF rules defined previously or after or a combination of the four control forms

_ J
A character as EBNF rule would be something like

<digit_zero> <- 0
Another EBNF rule as RHS would be something like:
<number_zero> <- <digit_zero>

We have to also define an entry rule, which, if nothing else is specified, is the last rule. It marks the entry point
from where the checks are run.

1.2 Control forms

1.2.1 Sequence

Sequence Definition 1.2

Concatenation of the elements. Noted with a space between the elements.
<rule> <- E1 E2 E3

1.2.2 Decision

This control form has two options, namely selection and option.

m Definition 1.3

We can choose ezactly one of the elements listed with pipe characters (called stroke).
<rule> <- E1 | E2 | E3

_

m Definition 1.4

We can either choose to use the element or not. Noted with square brackets. € is the empty element, which
is returned if the option is not chosen.
<rule> <- [E]

I _

September 20, 2025 2/10

Introduction to Programming Janis Hutz

1.2.3 Repetition

Repetition

Definition 1.5

Repeat an element n € Ny times, so repeating it 0 times is also valid. Noted using curly brackets.
<rule> <- {E}

1.2.4 Recursion

Definition 1.6

Recursively repeat an element, by adding it to the RHS of itself
<rule> <- <digit> <rule>

We can have direct or indirect recursion, where indirect recursion is when the recursion is not directly on the rule
itself, but through elements of the RHS of the rule.

1.3 Parenthesis

There are precedences, but for where they have not been covered, parenthesis are used to clarify what is meant.
Always put them there, if it is not 100% clear what is meant.

_ Sequence binds weaker than everything else.

1.4 Special caracters

We use boxes around them if we want to use them as literals, not as EBNF characters, i.e. if we want to write {},

then we write , same goes for space, which we can also write using the space symbol, .

September 20, 2025 3/10

Introduction to Programming

Janis Hutz

1.5 Nomenclature & Notation

A BN

e Legal: A word is considered legal if there is a derivation of the character sequence
e Derivation: Sequence of derivation steps
e Derivation step:

— Replace rules with their definition (RHS)

— Selection: Select element in a selection

— Option: Choose whether to select an optional element

— Repetition: Decide on the number of repetitions of the element

_

| Torms 3N

1.5.1 Notation of derivation

Derivation

e Derivation table

— First row is the entry rule

— Last row is a sequence of characters

— Transition between rows is a derivation step
e Derivation tree

— Root is the name of the entry rule

— Leafs are characters

— Connections are the derivation steps

.

1.5.2 Syntax vs. Semantics

Syntax = Structure / Form (Grammar), Semantics = Meaning / Interpretation

1.6 Graphical noatation of EBNF
With syntax graph. We can replace names in the syntax graph with another graph.

_:ABC=>—>A-B-C—>

_: A | B | C = — Parallel circuit-like notation —

-: [A] = — Parallel circuit-like notation, two options, top is the element, bottom is empty —

_: {A} = — Similar to option, but there is a loop back at the top element (allowing repetition) —

September 20, 2025

4/10

Introduction to Programming Janis Hutz

2

Peculiarities of Java

Automatic casting in additions works for all data types (including primitives)

Automatic casting in comparisons only works for int (as well as short and long, but with long we lose
precision on conversion) to double

Array.toString() outputs the memory address.
Class.toString() is automatically called when outputing to stdout or casting to string.

Arrays.toString() outputs the array’s elements with .toString() (if non-primitive), use Arrays.deepToString()
to fix

File APIis as ugly as a Zombie. Works as follows: Scanner sc = new Scanner(new File(’/path/to/file’));
then using normal Scanner api is possible (e.g. sc.nextLine())

Accessing super’s private fields is compiler error

Using an implicit constructor of super which has a different implementation causes a runtime, not compile
time error.

Abstract class without methods is valid.

Compile time error if two classes do not share a super class when using instanceof (because that would
evaluate to false at all times)

super .x fine, super.super.x not (compiler error)
StackOverflow error can be caught by try-catch
Method overloading instead of optional parameters

Incrementation of variable binds stronger than addition. If we have x = 2 and calculate ++x + x++, we get
6, © = 4, thus, we have 3 + 3, as « is first incremented, then added (pre-increment). 4+ + x first increments,
then the incremented value returned. x + + is first returned, then incremented.

Do-While Loops. . .1 mean wtf
We can change the visibility of a method of a class from not set to public

We can cast a class to a super class if we then only call the methods also defined in said super class. If the
method is overridden, the overridden method (the one from the sub-class) is called.

We can’t cast to a subclass (which makes sense), but it’s Runtime, not Compile time error (because Java’s
compiler does type erasing and hence can’t check that. Pure idiocy)

The compiler considers the reference type for an object reference when determining if instanceof is possible
or not

Casting a class to a different class of a different branch causes an Exception, not a compile time error

Casting to an interface or class if there is a connection through a subclass (or subsubclass, ...), runtime
rather than compile time error.

The Reference type is the type that the reference has (also called static type). Casting a pointer to a different type
only changes the reference type, thus all the behvaiour making much more sense:

3

Calling methods that are not defined on the reference type — Compile time error

Actually resonable stuff in Java

for, while, try-catch, typing

Generics (apart from type erasure)

Automatic type casting exists (even though sorta weird)
Comparisons between incompatible types is compiler error

Chaining comparison operators not allowed (but boolean, i.e. && and || is allowed)

September 20, 2025 5/ 10

Introduction to Programming Janis Hutz

e Objects are passed by reference, primitives are copied

e Can’t call var.super.method() (same with this for that matter)

September 20, 2025 6 /10

Introduction to Programming Janis Hutz

4

Tips & Tricks

Last four digits of int: number % 10000

. . . 0 if number is even
Decide if number is even: number % 2 = {1 I
else

Parenthesis: Always use explicitly

Casting: (double) 19 / 5 = 3.8 instead of 3 (19 is cast to double, then auto-casting to double of 5 —
division of doubles)

Scanner: Scanner scanner = new Scanner(System.in);, then e.g. int age = scanner.nextInt();. It
is safest to read input as string and then manually cast / convert to required types, as we can handle additional
PEBCAK (Problem Exist Between Chair And Keyboard). This is done using scanner.nextLine().

Random: Random.nextInt(n) returns a random number in [1, n]
De Morgan’s Rules: Use them for inverting the expression (but also kinda unnecessary)
Off-by-one errors: Try to run through with small iteration counts and check edge cases

CompareTo method: ol.compareTo(o2) < 0 // ol < 02

September 20, 2025 7/ 10

Introduction to Programming Janis Hutz

5 Abstract class vs Interface

Points Abstract class Interface
Abstract methods v v

Concrete methods v X

Static methods v v

Inheritance count 1 only multiple

Access modifiers Any None

Variables Member allowed All public static final
Instantiation possible X X

Table 1: Comparison of abstract classes and interfaces

Abstract classes are used when there is a default implementation of a method that is expected not to be overridden
and a different class should only inherit this class and not combine, in any other case Interface, since it’s more
flexible.

September 20, 2025 8 /10

Introduction to Programming Janis Hutz

6 Maps, Lists & Sets

6.1 Maps
Similar to plain objects in T'S, Map<KeyType, ValueType> map = new HashMap<KeyType, ValueType>();.

6.2 Lists

Work similarly to ARRAYS, but are dynamic size (like Vectors in Rust). Usually, we use ARRAYLIST, but STACK
and QUEUE also implement this interface. List<Type> list = new ArrayList<Type>();

6.3 Sets

SETs are like mathematical sets, in that they only allow an element to be in it once. See the different implemen-
tations below for details on how they can be implemented. Set<Type> set = new HashSet<Type>();

6.4 Different implementations
MAPSs & SETS share similar implementations for the interfaces.
A TREESET / TREEMAP is based on a binary tree and a class E has to implement Comparable<E> (i.e. the compare

method). |ENEIEOMBISER] O (lox(r))

A HASHSET / HASHMAP uses a hash table (a table that stores a reference to an object of which a hash was com-

puted). The order of elements is not guaranteed and not predictable from system to system _
O (1).

A LINKEDHASHSET / LINKEDHASHMAP work similarly to HASHSET / HASHMAP, but the order is maintained

(i.e. output in the order the elements were added). _ o1)

September 20, 2025 9/10

Introduction to Programming Janis Hutz

7 Loop-Invariant

1. Write down a table with the loop iteration number and what the state of each variable in the loop is
2. Check what causes the loop to end (in while, it’s the inverse of the condtion, in for, it is the same concept)

3. Then, use that break condition (inverted) and establish an upper (or lower) bound for the variable involved.
(e.g. i < arr.length in the loop condition turns into i < 0 arr.length in the loop invariant)

4. Specify all condtions for all the variables known through the pre and post-conditions, as far as applicable

Also, all other variables that are being changed need to be addressed in the invariant, ensuring that the statements
resolve to boolean when executed (== and not = for comparison (because valid Java Syntax required).

For the pre- and postconditions, ensure to also address ALL variables in the loop, even if it seems unnecessary.

8 Mean things
8.1 In EBNF

e Unbalanced brackets

8.2 Java

e Non-private attributes that could be changed prior to execution
e Spaces in variable names
e Using reserved names as variable names

Unbalanced brackets

September 20, 2025 10 / 10

	EBNF
	Rules
	Control forms
	Sequence
	Decision
	Repetition
	Recursion

	Parenthesis
	Special caracters
	Nomenclature & Notation
	Notation of derivation
	Syntax vs. Semantics

	Graphical noatation of EBNF

	Peculiarities of Java
	Actually resonable stuff in Java
	Tips & Tricks
	Abstract class vs Interface
	Maps, Lists & Sets
	Maps
	Lists
	Sets
	Different implementations

	Loop-Invariant
	Mean things
	In EBNF
	Java

