mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-12 08:08:25 +00:00
[Analysis] Add example
This commit is contained in:
Binary file not shown.
@@ -31,33 +31,33 @@
|
||||
\method \textbf{Educated Guess}\\
|
||||
Usually, $y$ has a similar form to $b$:
|
||||
|
||||
\begin{tabular}{ll}
|
||||
\hline
|
||||
$b(x)$ & \text{Guess} \\
|
||||
\hline
|
||||
$a \cdot e^{\alpha x}$ & $b \cdot e^{\alpha x}$ \\
|
||||
$a \cdot \sin(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
|
||||
$b \cdot \cos(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
|
||||
$ae^{\alpha x} \cdot \sin(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
|
||||
$be^{\alpha x} \cdot \cos(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
|
||||
$P_n(x) \cdot e^{\alpha x}$ & $R_n(x) \cdot e^{\alpha x}$\\
|
||||
$P_n(x) \cdot e^{\alpha x}\sin(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
|
||||
$P_n(x) \cdot e^{\alpha x}\cos(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\begin{footnotesize}
|
||||
\begin{center}
|
||||
\begin{tabular}{ll}
|
||||
\hline
|
||||
$b(x)$ & \text{Guess} \\
|
||||
\hline
|
||||
$a \cdot e^{\alpha x}$ & $b \cdot e^{\alpha x}$ \\
|
||||
$a \cdot \sin(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
|
||||
$b \cdot \cos(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
|
||||
$ae^{\alpha x} \cdot \sin(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
|
||||
$be^{\alpha x} \cdot \cos(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
|
||||
$P_n(x) \cdot e^{\alpha x}$ & $R_n(x) \cdot e^{\alpha x}$\\
|
||||
$P_n(x) \cdot e^{\alpha x}\sin(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
|
||||
$P_n(x) \cdot e^{\alpha x}\cos(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{footnotesize}
|
||||
|
||||
\remark If $\alpha, \beta$ are roots of $P(X)$ with multiplicity $j$, multiply guess with a $P_j(x)$.
|
||||
|
||||
\subsection{Linear Solutions: Constant Coefficients}
|
||||
\textbf{Form:}
|
||||
$$
|
||||
y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b
|
||||
$$
|
||||
\textbf{Form:} $ y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b$\\
|
||||
\subtext{Where $a_0, \ldots, a_{k-1} \in \C$ are constants, $b(x)$ is continuous.}
|
||||
|
||||
\subsubsection{Homogeneous Equations}
|
||||
|
||||
The idea is to find a Basis of $\S$:
|
||||
\smalltext{The idea is to find a Basis of $\S$:}
|
||||
|
||||
\definition \textbf{Characteristic Polynomial} $P(X) = \prod_{i=1}^{k} (X-\alpha_i)$
|
||||
|
||||
@@ -82,7 +82,6 @@ $$
|
||||
\end{subbox}
|
||||
\subtext{Solutions exist $\forall Z = (z_1,\ldots,z_k)$ since that system's $\det(M_Z) \neq 0$.}
|
||||
|
||||
\newpage
|
||||
\subsubsection{Inhomogeneous Equations}
|
||||
|
||||
\method \textbf{Undetermined Coefficients}: An educated guess.
|
||||
@@ -98,13 +97,24 @@ $$
|
||||
|
||||
\remark \textbf{Applying Linearity}\\
|
||||
If $b(x) = \sum_{i=1}^{n} b_i(x)$, A solution for $b(x)$ is $f(x) = \sum_{i=1}^{n} f_i(x)$\\
|
||||
\subtext{Sometimes called \textit{Superposition Principle} in this context}
|
||||
\subtext{Sometimes called \textit{Superposition Principle} in this context.}
|
||||
|
||||
\subsection{Other Methods}
|
||||
|
||||
\method \textbf{Change of Variable}\\
|
||||
If $f(x)$ is replaced by $h(y) = f(g(y))$, then $h$ is a sol. too.\\
|
||||
\subtext{Changes like $h(t) = f(e^t)$ may lead to useful properties.}
|
||||
\subtext{Changes like $h(t) = f(e^t)$ may lead to, i.e. ODEs in constant coeffs}
|
||||
|
||||
\begin{footnotesize}
|
||||
\textbf{Example:} $2xy' - y = 0$ \\
|
||||
Using substitution: $x = e^t,\quad h(t) = y(e^t),\quad h'(t) = e^t \cdot y'(e^t)$
|
||||
\begin{enumerate}
|
||||
\item $2x \cdot y'(x) = 2 \cdot h'(t)$
|
||||
\item $-y(x)$ = $-h(t)$
|
||||
\end{enumerate}
|
||||
So: $2xy' - y \overset{\text{sub}}{=} 2h'(t) - h(t) = 0$ \\
|
||||
Yields: $h(t) = \alpha \cdot e^\frac{t}{2} \overset{\text{resub}}{\implies} y(x) = \alpha \cdot e^\frac{\ln(x)}{2} = \alpha \cdot \sqrt{x}$
|
||||
\end{footnotesize}
|
||||
|
||||
\begin{subbox}{Separation of Variables}
|
||||
Form:
|
||||
@@ -119,15 +129,16 @@ If $f(x)$ is replaced by $h(y) = f(g(y))$, then $h$ is a sol. too.\\
|
||||
\subtext{Usually $\int 1/a(y)\ \text{d}y$ can be solved directly for $\ln|a(y)|+c$.}
|
||||
|
||||
\subsection{Method Overview}
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{l|l}
|
||||
\textbf{Method} & \textbf{Use case} \\
|
||||
\hline
|
||||
Variation of constants & LDE with $\ord(F)=1$ \\
|
||||
Characteristic Polynomial & Hom. LDE w/ const. coeff. \\
|
||||
Undetermined Coefficients & Inhom. LDE w/ const. coeff. \\
|
||||
Separation of Variables & ODE s.t. $y' = a(y)\cdot b(x)$ \\
|
||||
Change of Variables & e.g. $y' = f(ax + by + c)$ \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\begin{footnotesize}
|
||||
\begin{center}
|
||||
\begin{tabular}{l|l}
|
||||
\textbf{Method} & \textbf{Use case} \\
|
||||
\hline
|
||||
Variation of constants & LDE with $\ord(F)=1$ \\
|
||||
Characteristic Polynomial & Hom. LDE w/ const. coeff. \\
|
||||
Undetermined Coefficients & Inhom. LDE w/ const. coeff. \\
|
||||
Separation of Variables & ODE s.t. $y' = a(y)\cdot b(x)$ \\
|
||||
Change of Variables & e.g. $y' = f(ax + by + c)$ \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{footnotesize}
|
||||
Reference in New Issue
Block a user