diff --git a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf index 9c99f80..3d69383 100644 Binary files a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf and b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf differ diff --git a/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex b/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex index d798fc1..98b4eb3 100644 --- a/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex +++ b/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex @@ -1,16 +1,17 @@ \stepcounter{subsection} \subsection{Continuity} \compactdef{Convergence in $\R^n$} Let $(x_k)_{k \in \N}$ where $x_k \in \R^n$ with $x_k = (x_{k, 1}, \ldots, x_{k, n})$ and let $y = (y_1, \ldots, y_n) \in \R^n$. -$(x_k)$ converges to $y$ as $k \rightarrow +\infty$ if $\forall \varepsilon > 0 \smallhspace \exists N \geq 1$ s.t. $\forall n \geq N$ we have $||x_k - y|| < \varepsilon$ +$(x_k)$ converges to $y$ as $k \rightarrow +\infty$ if $\forall \varepsilon > 0 \smallhspace \exists N \geq 1$ s.t. $\forall n \geq N$ we have $||x_k - y|| < \varepsilon$\\ % ──────────────────────────────────────────────────────────────────── \shortlemma $(x_k)$ converges to $y$ as $k \rightarrow +\infty$ iff one of following equiv. statements holds: \bi{(1)} $\forall 1 \leq i \leq n$, the sequence $(x_{k, i})$ with $x_{k, i} \in \R$ converges to $y_i$ -\bi{(2)} $(||x_k - y||)$ converges to $0$ as $k \rightarrow +\infty$ +\bi{(2)} $(||x_k - y||)$ converges to $0$ as $k \rightarrow +\infty$\\ % ──────────────────────────────────────────────────────────────────── \compactdef{Continuity} Let $X \subseteq \R^n$ and $f: X \rightarrow \R^m$. \bi{(1)} Let $x_0 \in X$. $f$ continuous in $\R^n$ if $\forall \varepsilon > 0 \smallhspace \exists \delta > 0$ s.t. if $x \in X$ satisfies $||x - x_0|| < \delta$, then $||f(x) - f(x_0)|| < \varepsilon$ \bi{(2)} $f$ continuous \textit{on} $X$ if continuous at $x_0 \smallhspace \forall x_0 \in X$ +% TODO: Add tricks from TA slides here (week 05 / 04) % ──────────────────────────────────────────────────────────────────── \shortproposition Let $X$ and $f$ as prev. Let $x_0 \in X$. $f$ continuous at $x_0$ iff $\forall (x_k)_{k \geq 1}$ in $X$ s.t. $x_k \rightarrow x_0$ as $k \rightarrow +\infty$, $(f(x_k))_{k \geq 1}$ in $\R^m$ converges to $f(x)$\\