mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 02:24:23 +00:00
[Analysis] Basically catch up to present day
This commit is contained in:
Binary file not shown.
@@ -71,6 +71,9 @@ You could also print it as two A5 pages per A4 page and also print the
|
||||
\section{Differential Equations}
|
||||
\input{parts/diffeq/00_intro.tex}
|
||||
\input{parts/diffeq/linear-ode/00_intro.tex}
|
||||
\input{parts/diffeq/linear-ode/01_order-one.tex}
|
||||
\input{parts/diffeq/linear-ode/02_constant-coefficient.tex}
|
||||
% \input{parts/diffeq/linear-ode/}
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,12 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Linear Differential Equations}
|
||||
\compactdef{Linear differential equation of order $k$}
|
||||
An ODE is considered linear if and only if the $y$s are only scaled and not part of powers.\\
|
||||
\compactdef{Linear differential equation of order $k$} (order = highest derivative)
|
||||
$y^{(k)} + a_{k - 1}y^{(k - 1)} + \ldots + a_1 y' + a_0 y = b$, with $a_i$ and $b$ functions in $x$.
|
||||
If $b(x) = 0 \smallhspace \forall x$, \bi{homogeneous}, else \bi{inhomogeneous}
|
||||
If $b(x) = 0 \smallhspace \forall x$, \bi{homogeneous}, else \bi{inhomogeneous}\\
|
||||
%
|
||||
\shorttheorem For open $I \subseteq \R$ and $k \geq 1$, for lin. ODE over $I$ with cont. $a_i$ we have:
|
||||
\bi{(1)} Set $\mathcal{S}$ of $k \times$ diff. sol. $f: I \rightarrow \C (\R)$ of the eq. is a complex (real) subspace of complex (real)-valued func. over $I$;
|
||||
\bi{(2)} $\dim(\mathcal{S}) = k \smallhspace\forall x_0 \in I$ and any $(y_0, \ldots, y_{k - 1}) \in \C^k$, exists unique $f \in \mathcal{S}$ s.t. $f(x_0) = y_0, f'(x_0) = y_1, \ldots, f^{(k - 1)}(x_0) = y_{k - 1}$. If $a_i$ real-valued, same applies, but $\C$ replaced by $\R$.
|
||||
\bi{(3)} Let $b$ cont. on $I$. Exists solution $f_0$ to inhom. lin. ODE and $\mathcal{S}_b$ is set of funct. $f + f_0$ where $f \in \mathcal{S}$\\
|
||||
The solution space $\mathcal{S}$ is spanned by $k$ functions, which thus form a basis of $\mathcal{S}$. If inhomogeneous, $\mathcal{S}$ not vector space.
|
||||
|
||||
@@ -1,2 +1,7 @@
|
||||
\newsection
|
||||
\subsection{Linear Differential Equations of first order}
|
||||
\newsectionNoPB
|
||||
\subsection{Linear differential equations of first order}
|
||||
\shade{gray}{Finding solution set} \bi{(1)} Find basis $\{ f_1, \ldots, f_k \}$ for $\mathcal{S}_0$ for homogeneous equation (set $b(x) = 0$).
|
||||
\bi{(2)} If inhom. find $f_p$ that solves the equation. The set of solutions $\mathcal{S}_b = \{ f_h + f_p \divides f_h \in \mathcal{S_0} \}$.
|
||||
\bi{(3)} If initial conditions, find equations $\in \mathcal{S}_b$ which fulfill conditions using SLE (as always)
|
||||
|
||||
\shortproposition Solution of $y' + ay = 0$ is of form $f(x) = z e^{-A(x)}$ with $A$ anti-derivative of $a$
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Linear differential equations with constant coefficients}
|
||||
The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant.
|
||||
|
||||
Reference in New Issue
Block a user