[AD] Update summary to new version of helpers

This commit is contained in:
2025-09-26 12:31:55 +02:00
parent 33f034fdd1
commit eecaab61fc
16 changed files with 110 additions and 109 deletions

View File

@@ -16,8 +16,8 @@
\subsection{Asymptotic Growth}
$f$ grows asymptotically slower than $g$ if $\displaystyle\lim_{m \rightarrow \infty} \frac{f(m)}{g(m)} = 0$.
We can remark that $f$ is upper-bounded by $g$, thus $f \leq$\tco{g} and we can say $g$ is lower bounded by $f$, thus $g \geq$ \tcl{f}.
If two functions grow equally fast asymptotically, \tct{f} $= g$
We can remark that $f$ is upper-bounded by $g$, thus $f \leq \tco{g}$ and we can say $g$ is lower bounded by $f$, thus $g \geq \tcl{f}$.
If two functions grow equally fast asymptotically, $\tct{f} = g$
\subsection{Runtime evaluation}
@@ -89,5 +89,5 @@ Therefore, the summation evaluates to $15$.
\subsection{Specific examples}
\begin{align*}
\frac{n}{\log(n)} \geq \Omega(\sqrt{n}) \Leftrightarrow \sqrt{n} \leq \text{\tco{\frac{n}{\log(n)}}}
\frac{n}{\log(n)} \geq \Omega(\sqrt{n}) \Leftrightarrow \sqrt{n} \leq \tco{\frac{n}{\log(n)}}
\end{align*}