mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 10:34:23 +00:00
[AD] Update summary to new version of helpers
This commit is contained in:
@@ -16,8 +16,8 @@
|
||||
|
||||
\subsection{Asymptotic Growth}
|
||||
$f$ grows asymptotically slower than $g$ if $\displaystyle\lim_{m \rightarrow \infty} \frac{f(m)}{g(m)} = 0$.
|
||||
We can remark that $f$ is upper-bounded by $g$, thus $f \leq$\tco{g} and we can say $g$ is lower bounded by $f$, thus $g \geq$ \tcl{f}.
|
||||
If two functions grow equally fast asymptotically, \tct{f} $= g$
|
||||
We can remark that $f$ is upper-bounded by $g$, thus $f \leq \tco{g}$ and we can say $g$ is lower bounded by $f$, thus $g \geq \tcl{f}$.
|
||||
If two functions grow equally fast asymptotically, $\tct{f} = g$
|
||||
|
||||
|
||||
\subsection{Runtime evaluation}
|
||||
@@ -89,5 +89,5 @@ Therefore, the summation evaluates to $15$.
|
||||
|
||||
\subsection{Specific examples}
|
||||
\begin{align*}
|
||||
\frac{n}{\log(n)} \geq \Omega(\sqrt{n}) \Leftrightarrow \sqrt{n} \leq \text{\tco{\frac{n}{\log(n)}}}
|
||||
\frac{n}{\log(n)} \geq \Omega(\sqrt{n}) \Leftrightarrow \sqrt{n} \leq \tco{\frac{n}{\log(n)}}
|
||||
\end{align*}
|
||||
|
||||
Reference in New Issue
Block a user