[NumCS] Fix typos and layout

This commit is contained in:
2026-01-08 12:28:17 +01:00
parent 149bcae126
commit d56f3306d0
6 changed files with 50 additions and 47 deletions

View File

@@ -12,12 +12,13 @@ Die $x_i$ heissen Stützstellen/Knoten, für welche $\tilde{f}(x_i) = y_i$ gelte
\quad x_i, y_i \in \mathbb{R}
\end{align*}
Normalerweise stellt $f$ eine echte Messung dar, d.h. macht es Sinn anzunehmen dass $f$ glatt ist.
Normalerweise stellt $f$ eine echte Messung dar, d.h. es macht Sinn anzunehmen dass $f$ glatt ist.
Die informelle Problemstellung oben lässt sich durch Vektorräume formalisieren:
$f \in \mathcal{V}$, wobei $\mathcal{V}$ ein Vektorraum mit $\dim(\mathcal{V}) = \infty$ ist. \\
Wir suchen d.h. $\tilde{f}$ in einem Unterraum $\mathcal{V}_n$ mit endlicher $\dim(\mathcal{V}_n) = n$.
$f \in \mathcal{V}$, wobei $\mathcal{V}$ ein Vektorraum mit $\dim(\mathcal{V}) = \infty$ ist.
Wir suchen also $\tilde{f}$ in einem Unterraum $\mathcal{V}_n$ mit endlicher $\dim(\mathcal{V}_n) = n$.
Sei $B_n = \{b_1,\ldots,b_n\}$ eine Basis für $\mathcal{V}_n$.
Dann lässt sich der Bezug zwischen $f$ und $\tilde{f} = f_n(x)$ so ausdrücken:
\begin{align*}
@@ -26,7 +27,7 @@ Dann lässt sich der Bezug zwischen $f$ und $\tilde{f} = f_n(x)$ so ausdrücken:
\setLabelNumber{all}{1}
\inlineremark Unterräume $\mathcal{V}_n$ existieren nicht nur für Polynome, wir beschränken uns aber auf $b_j(x) = x^{i-1}$.
Andere Möglichkeiten: $b_j = \cos((j-1)\cos^-1(x))$ \textit{(Chebyshev)} oder $b_j = e^{i2\pi j x}$ \textit{(Trigonometrisch)}
Andere Möglichkeiten: $b_j = \cos((j-1)\cos^{-1}(x))$ \textit{(Chebyshev)} oder $b_j = e^{i2\pi j x}$ \textit{(Trigonometrisch)}
\fancytheorem{Peano} $f$ stetig $\implies \exists p(x)$ welches $f$ in $||\cdot||_\infty$ beliebig gut approximiert.