mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-11 13:38:24 +00:00
[TI] Compact: Almost finish reductions
This commit is contained in:
@@ -65,11 +65,90 @@ First off, a list of important languages for this and the next section:
|
||||
\item $L_{H, \lambda} = \{ \text{Kod}(M) \divides M \text{ halts on } \lambda \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
|
||||
\end{itemize}
|
||||
|
||||
\newpage
|
||||
\setLabelNumber{definition}{3}
|
||||
\fancydef{Recursively reducible languages} $L_1 \leq_R L_2$ ($L_1$ reducible into $L_2$), if $L_2 \in \cL_R \Rightarrow L_1 \in \cL_R$
|
||||
|
||||
\fancydef{$EE$-Reductions} $L_1 \leq_{EE} L_2$ if there exists a TM $M$ that implements image $f_M : \word_1 \rightarrow \word_2$,
|
||||
for which we have $x \in L_1 \Leftrightarrow f_M(x) \in L_2$ for all $x \in \wordbool_1$
|
||||
|
||||
\setLabelNumber{lemma}{3}
|
||||
\inlinelemma If $L_1 \leq_{EE} L_2$ then also $L_1 \leq_R L_2$
|
||||
|
||||
\inlinelemma For each language $L \subseteq \word$ we have: $L \leq_R L^C$ and $L^C \leq_R L$
|
||||
|
||||
\setLabelNumber{theorem}{6}
|
||||
\fancytheorem{Universal TM} A TM $U$, such that $L(U) = L_U$
|
||||
|
||||
|
||||
\fhlc{Cyan}{Showing reductions} First, a general guide to reductions and below what else we need to keep in mind for specific reductions:
|
||||
\begin{enumerate}
|
||||
\item We construct a TM $A$ that:
|
||||
\begin{enumerate}
|
||||
\item Checks if the input has the right form and if it does not, returns some output that is $\notin L_2$
|
||||
\item Applies the transformation to all remaining input
|
||||
\end{enumerate}
|
||||
\item We show $x \in L_1 \Leftrightarrow A(x) \in L_2$ by showing the implications:
|
||||
\begin{enumerate}
|
||||
\item For $\Rightarrow$, we show it directly, by assuming that $x \in L_1$ (obviously) and we can ignore the invalid input (as that $\notin L_1$ anyway)
|
||||
\item For $\Leftarrow$, we have two options (mention what happens to invalid input here):
|
||||
\begin{itemize}
|
||||
\item We show $A(x) \in L_2 \Rightarrow x \in L_1$ directly (usually harder)
|
||||
\item We show $x \notin L_1 \Rightarrow A(x) \notin L_2$ (contraposition)
|
||||
\end{itemize}
|
||||
\end{enumerate}
|
||||
\item Show that the TM always halts (for $P$, $EE$ and $R$ reductions at least)
|
||||
\end{enumerate}
|
||||
|
||||
\shade{Cyan}{$EE$-reductions} They follow the above scheme exactly
|
||||
|
||||
\shade{Cyan}{$R$-reductions} It is usually a good idea to draw the setup here. We have a TM $C$ that basically executes an $EE$-reduction and we have a TM $A$ that can check $L_2$.
|
||||
Then, we have a TM $B$ that wraps the whole thing: It first executes TM $C$, which will either output an transformation of $L_1$ for $L_2$ (i.e. execute an $EE$-reduction) or
|
||||
output some encoding for \textit{invalid word}.
|
||||
If it outputs the encoding for \textit{invalid word}, $B$ will output $x \notin L_1$.
|
||||
|
||||
If $C$ does not output an encoding for \textit{invalid word}, then $B$ will execute $A$ on the output of $C$ and then use the output of $A$ (either accepting or rejecting)
|
||||
to output the same (i.e. if $A$ accepts, then $B$ will output $x \in L_1$ and if $A$ rejects, $B$ outputs $x \notin L_1$)
|
||||
|
||||
\inlineintuition In $R$-reductions, we construct a full verifier for $L_1$ using the verifier for $L_2$, i.e. we can use TM $B$ directly to check if a given word is in $L_1$
|
||||
given that the transformed word is also in $L_2$.
|
||||
|
||||
|
||||
\shade{Cyan}{$P$-reductions} (Used in Chapter \ref{sec:complexity}). We need to also show that $A$ terminates in polynomial time.
|
||||
|
||||
\shade{orange}{Tips \& Tricks:}
|
||||
\begin{itemize}
|
||||
\item The TM $A$ has to terminate always
|
||||
\item Check the input for the correct form first
|
||||
\item For the correctness, show $x \in L_1 \Leftrightarrow A(x) \in L_2$
|
||||
\item The following tricks can be useful:
|
||||
\begin{itemize}
|
||||
\item Transitions into $\qacc$ and $\qrej$ can be redirected to $\qacc / \qrej$ or into an infinite loop
|
||||
\item Construct TM $M'$ that ignores input and does the same, regardless of input
|
||||
\end{itemize}
|
||||
\item Generate encoding of a $TM$ with special properties (e.g. accepts all input, never halts, \dots)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
|
||||
|
||||
\newpage
|
||||
\subsection{Rice's Theorem}
|
||||
\setLabelNumber{definition}{7}
|
||||
\inlinedef $L$ is called a \bi{semantically non-trivial decision problem}, if these conditions apply:
|
||||
\begin{enumerate}[label=\textit{(\roman*)}]
|
||||
\item There exists a TM $M_1$, such that $\text{Kod}(M_1) \in L$ (i.e. $L \neq \emptyset$)
|
||||
\item There exists a TM $M_2$, such that $\text{Kod}(M_2) \notin L$ (not all encodings are in $L$)
|
||||
\item For two TM $A$ and $B$: $L(A) = L(B) \Rightarrow \text{Kod}(A) \in L \Rightarrow \text{Kod}(B) \in L$
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\setLabelNumber{theorem}{9}
|
||||
\fancytheorem{Rice's Theorem}
|
||||
\fancytheorem{Rice's Theorem} Every semantically non-trivial decision problem over TMs is undecidable
|
||||
|
||||
\fhlc{Cyan}{Using Rice's Theorem} We only need to show that a language is semantically non-trivial, which we do by checking the above conditions.
|
||||
For the third condition, intuitively, we only need to check if in the definition of $L$ only $L(M)$ appears and nowhere $M$ directly (except of course, to say that $M$ has to be a TM),
|
||||
or the condition can be restated such that only $L(M)$ is described by it.
|
||||
|
||||
For a more formal proof of that condition, simply show that the implication holds
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
\newsection
|
||||
\section{Complexity}
|
||||
\label{sec:complexity}
|
||||
|
||||
Binary file not shown.
@@ -61,6 +61,7 @@ As general recommendations, try to substitute possibly ``weird'' definitions in
|
||||
\input{parts/02_finite-automata.tex}
|
||||
\input{parts/03_turing-machines.tex}
|
||||
\input{parts/04_computability.tex}
|
||||
\input{parts/05_complexity.tex}
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user