[Analysis] Basically catch up

This commit is contained in:
2025-10-21 16:25:19 +02:00
parent 1692043d40
commit c5de4583fb
3 changed files with 23 additions and 1 deletions

View File

@@ -4,7 +4,7 @@ The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ cons
%
\shade{gray}{Homogeneous Equation}\rmvspace
\begin{enumerate}[noitemsep]
\item Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i \in \R$).
\item Find \bi{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i \in \R$).
\item Find the roots of polynomial. The solution space is given by $\{ z_j \cdot x^{v_j - 1} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$.
For $\gamma_i = \alpha + \beta i \in \C$, we have $z_1 \cdot e^{\alpha x}\cos(\beta x)$, $z_2 \cdot e^{\alpha x}\sin(\beta x)$, representing the two complex conjugated solutions.
\end{enumerate}