diff --git a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf index 5e1188d..500e111 100644 Binary files a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf and b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf differ diff --git a/semester3/analysis-ii/parts/diffeq/linear-ode/00_intro.tex b/semester3/analysis-ii/parts/diffeq/linear-ode/00_intro.tex index a4c07e6..e878acd 100644 --- a/semester3/analysis-ii/parts/diffeq/linear-ode/00_intro.tex +++ b/semester3/analysis-ii/parts/diffeq/linear-ode/00_intro.tex @@ -2,11 +2,22 @@ \subsection{Linear Differential Equations} An ODE is considered linear if and only if the $y$s are only scaled and not part of powers.\\ \compactdef{Linear differential equation of order $k$} (order = highest derivative) -$y^{(k)} + a_{k - 1}y^{(k - 1)} + \ldots + a_1 y' + a_0 y = b$, with $a_i$ and $b$ functions in $x$. +$y^{(k)} + a_{k - 1}y^{(k - 1)} + \ldots + a_1 y' + a_0 y = b$, with $a_i$ and $b$ functions in $x$. If $b(x) = 0 \smallhspace \forall x$, \bi{homogeneous}, else \bi{inhomogeneous}\\ % \shorttheorem For open $I \subseteq \R$ and $k \geq 1$, for lin. ODE over $I$ with cont. $a_i$ we have: -\bi{(1)} Set $\mathcal{S}$ of $k \times$ diff. sol. $f: I \rightarrow \C (\R)$ of the eq. is a complex (real) subspace of complex (real)-valued func. over $I$; -\bi{(2)} $\dim(\mathcal{S}) = k \smallhspace\forall x_0 \in I$ and any $(y_0, \ldots, y_{k - 1}) \in \C^k$, exists unique $f \in \mathcal{S}$ s.t. $f(x_0) = y_0, f'(x_0) = y_1, \ldots, f^{(k - 1)}(x_0) = y_{k - 1}$. If $a_i$ real-valued, same applies, but $\C$ replaced by $\R$. -\bi{(3)} Let $b$ cont. on $I$. Exists solution $f_0$ to inhom. lin. ODE and $\mathcal{S}_b$ is set of funct. $f + f_0$ where $f \in \mathcal{S}$\\ +\begin{enumerate} + \item Set $\mathcal{S}$ of $k \times$ diff. sol. $f: I \rightarrow \C (\R)$ of the eq. is a complex (real) subspace of complex (real)-valued func. over $I$ + \item $\dim(\mathcal{S}) = k \smallhspace\forall x_0 \in I$ and any $(y_0, \ldots, y_{k - 1}) \in \C^k$, exists unique + $f \in \mathcal{S}$ s.t. $f(x_0) = y_0, f'(x_0) = y_1, \ldots, f^{(k - 1)}(x_0) = y_{k - 1}$. + If $a_i$ real-valued, same applies, but $\C$ replaced by $\R$. + \item Let $b$ cont. on $I$. Exists solution $f_0$ to inhom. lin. ODE and $\mathcal{S}_b$ is set of funct. $f + f_0$ where $f \in \mathcal{S}$\\ +\end{enumerate} The solution space $\mathcal{S}$ is spanned by $k$ functions, which thus form a basis of $\mathcal{S}$. If inhomogeneous, $\mathcal{S}$ not vector space. + +\shade{gray}{Finding solutions (in general)} +\begin{enumerate}[label=\bi{(\arabic*)}] + \item Find basis $\{ f_1, \ldots, f_k \}$ for $\mathcal{S}_0$ for homogeneous equation (set $b(x) = 0$). + \item If inhom. find $f_p$ that solves the equation. The set of solutions $\mathcal{S}_b = \{ f_h + f_p \divides f_h \in \mathcal{S_0} \}$. + \item If initial conditions, find equations $\in \mathcal{S}_b$ which fulfill conditions using SLE (as always) +\end{enumerate} diff --git a/semester3/analysis-ii/parts/diffeq/linear-ode/01_order-one.tex b/semester3/analysis-ii/parts/diffeq/linear-ode/01_order-one.tex index 7689bdb..ef133e7 100644 --- a/semester3/analysis-ii/parts/diffeq/linear-ode/01_order-one.tex +++ b/semester3/analysis-ii/parts/diffeq/linear-ode/01_order-one.tex @@ -1,8 +1,6 @@ \newsectionNoPB \subsection{Linear differential equations of first order} -\shade{gray}{Finding solution set} \bi{(1)} Find basis $\{ f_1, \ldots, f_k \}$ for $\mathcal{S}_0$ for homogeneous equation (set $b(x) = 0$). -\bi{(2)} If inhom. find $f_p$ that solves the equation. The set of solutions $\mathcal{S}_b = \{ f_h + f_p \divides f_h \in \mathcal{S_0} \}$. -\bi{(3)} If initial conditions, find equations $\in \mathcal{S}_b$ which fulfill conditions using SLE (as always) +\shade{gray}{Homogeneous equation} Move all $y$ to one side and all other vars to other. Integrate both \shortproposition Solution of $y' + ay = 0$ is of form $f(x) = z e^{-A(x)}$ with $A$ anti-derivative of $a$ diff --git a/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex b/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex index 061acdd..996bbae 100644 --- a/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex +++ b/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex @@ -2,6 +2,6 @@ \subsection{Linear differential equations with constant coefficients} The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant, where $b(x)$ can be any function.\\ % -\shade{gray}{Homo. Sol.} Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i$). +\shade{gray}{Homogeneous Equation} Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i$). Find the roots of polynomial. The solution space is given by $\{ x^{v_j - 1} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$. For $\gamma_i = \alpha + \beta i \in \C$, we have $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$.