diff --git a/semester3/numcs/numcs-summary.pdf b/semester3/numcs/numcs-summary.pdf index baa9d64..31dcf43 100644 Binary files a/semester3/numcs/numcs-summary.pdf and b/semester3/numcs/numcs-summary.pdf differ diff --git a/semester3/numcs/parts/01_interpolation/01_trigonometric/01_dft/01_construction.tex b/semester3/numcs/parts/01_interpolation/01_trigonometric/01_dft/01_construction.tex index 4b4ea3b..cbf78f4 100644 --- a/semester3/numcs/parts/01_interpolation/01_trigonometric/01_dft/01_construction.tex +++ b/semester3/numcs/parts/01_interpolation/01_trigonometric/01_dft/01_construction.tex @@ -66,7 +66,7 @@ Die skalierte Fourier-Matrix $\frac{1}{\sqrt{N}}F_N$ hat einige besondere Eigens Die diskrete Fourier-Transformation ist nun einfach die Anwendung der Basiswechsel-Matrix $F_N$. \setLabelNumber{all}{5} -\fancydef{Diskrete Fourier-Transformation} $\mathcal{F}_N: \mathbb{C} \to \mathbb{C}$ s.d. $\mathcal{F}_N(y) = F_Ny$ +\fancydef{Diskrete Fourier-Transformation} $\mathcal{F}_N: \mathbb{C}^N \to \mathbb{C}^N$ s.d. $\mathcal{F}_N(y) = F_Ny$ \begin{align*} \text{Für } c = \mathcal{F}_N(y) \text{ gilt: }\quad c_k = \sum_{j=0}^{N-1} y_j \omega_N^{kj} \end{align*}