diff --git a/semester3/ti-compact/parts/04_computability.tex b/semester3/ti-compact/parts/04_computability.tex index 9273a2c..462f4ce 100644 --- a/semester3/ti-compact/parts/04_computability.tex +++ b/semester3/ti-compact/parts/04_computability.tex @@ -28,7 +28,7 @@ Proving that a language \textit{is} recursively enumerable is as difficult as pr Proving that a language is \textit{not} recursively enumerable is likely easier. For it, let $d_{ij} = 1 \Longleftrightarrow M_i$ accepts $w_j$. -\inlineex Assume towards contradiction that $L_\text{diag} \in \cL_{RE}$. Let +\inlineex Assume towards contradiction that $L_\text{diag} \in \cL_{RE}$. Let \rmvspace \begin{align*} L_{\text{diag}} & = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \} \\ @@ -45,3 +45,31 @@ In other, more different, words, $w_i$ being in $L_\text{diag}$ implies (from th \setLabelNumber{theorem}{3} \inlinetheorem $L_\text{diag} \notin \cL_{RE}$ + +% ──────────────────────────────────────────────────────────────────── + + +\subsection{Reductions} +This is the start of the topics that are part of the endterm. + +First off, a list of important languages for this and the next section: +\begin{itemize} + \item $L_U = \{ \text{Kod}(M)\# w \divides w \in \wordbool \text{ and TM $M$ accepts } w \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $L_H = \{ \text{Kod}(M)\# x \divides x \in \wordbool \text{ and TM $M$ halts on } x \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $L_{\text{diag}} = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \}$ ($\notin \cL_{RE}$ and thus $\notin \cL_R$) + \item $(L_{\text{diag}})^C$ ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $L_{EQ} = \{ \text{Kod}(M)\# \text{Kod}(\overline{M}) \divides L(M) = L(\overline{M}) \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $\lempty = \{ \text{Kod}(M) \divides L(M) = \emptyset \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $(\lempty)^C = \{ x \in \wordbool \divides x \notin \text{Kod}(\overline{M}) \forall \text{ TM } \overline{M} \text{ or } x = \text{Kod}(M) \text{ and } L(M) \neq \emptyset \}$ + ($\in \cL_{RE}$, but $\notin \cL_R$) + \item $L_{H, \lambda} = \{ \text{Kod}(M) \divides M \text{ halts on } \lambda \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) +\end{itemize} + +\setLabelNumber{theorem}{6} +\fancytheorem{Universal TM} A TM $U$, such that $L(U) = L_U$ + +% ──────────────────────────────────────────────────────────────────── + +\subsection{Rice's Theorem} +\setLabelNumber{theorem}{9} +\fancytheorem{Rice's Theorem} diff --git a/semester3/ti-compact/parts/05_complexity.tex b/semester3/ti-compact/parts/05_complexity.tex new file mode 100644 index 0000000..e69de29 diff --git a/semester3/ti-compact/ti-compact.pdf b/semester3/ti-compact/ti-compact.pdf index 4be5cd2..744b5b8 100644 Binary files a/semester3/ti-compact/ti-compact.pdf and b/semester3/ti-compact/ti-compact.pdf differ diff --git a/semester3/ti-compact/ti-compact.tex b/semester3/ti-compact/ti-compact.tex index 520b635..f398fc5 100644 --- a/semester3/ti-compact/ti-compact.tex +++ b/semester3/ti-compact/ti-compact.tex @@ -6,6 +6,10 @@ \newcommand{\hdelta}{\hat{\delta}} \newcommand{\qacc}{q_{\text{accept}}} \newcommand{\qrej}{q_{\text{reject}}} +\newcommand{\ldiag}{L_{\text{diag}}} +\newcommand{\lempty}{L_{\text{empty}}} +\renewcommand{\tc}{\text{Time}} +\newcommand{\spc}{\text{Space}} \setup{Theoretical Computer Science - Compact}