mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 18:44:24 +00:00
[NumCS] Almost catch up
This commit is contained in:
@@ -91,6 +91,8 @@ Wir erhalten nun eine Quadraturformel, wenn wir $p$ als Approximation von $f$ ve
|
||||
\begin{align*}
|
||||
w_j = \int_{a}^{b} l_j(x), \smallhspace j = 0, 1, \ldots, n
|
||||
\end{align*}
|
||||
Diese Gewichte werden für die Trapez- und Simpson-Regeln verwendet, genau genommen, im Falle der Trapezregel haben wir $w_2$ und für die Simpsonregel $w_3$,
|
||||
also müssen wir die entsprechenden Lagrange-Polynome integrieren
|
||||
|
||||
\drmvspace
|
||||
Durch die Konstruktion der Formel ist sie exakt für alle Polynome aus $\mathcal{P}_{n + 1}$ und der Fehler ist:
|
||||
|
||||
@@ -1,2 +1,22 @@
|
||||
\newsection
|
||||
\subsection{Quadratur in $\R^d$ und dünne Gitter}
|
||||
Eine einfache Option wäre natürlich, zwei eindimensionale Quadraturformeln aneinander zu hängen.
|
||||
Für zweidimensionale Funktionen sieht dies so aus:
|
||||
\rmvspace
|
||||
\begin{align*}
|
||||
I = \int_{j_1}^{n_1} \sum_{j_2}^{n_2} \omega_{j_1}^1 \omega_{j_2}^2 f(c_{j_1}^1, c_{j_2}^2)
|
||||
\end{align*}
|
||||
|
||||
\drmvspace
|
||||
und für beliebige $d$ haben wir
|
||||
\rmvspace
|
||||
\begin{align*}
|
||||
\left( w_{j_k}^k, c_{j_k}^k \right)_{1 \leq j_k \leq n_k} \smallhspace k = 1, \ldots, d
|
||||
\end{align*}
|
||||
|
||||
\drmvspace
|
||||
Which has the same form as above, but with $d$ sums and $d$ times a $w_{j_k}$ and a $d$-dimensional function $f$
|
||||
|
||||
\begin{recall}[]{Tensor-Produkt}
|
||||
\TODO Write this section
|
||||
\end{recall}
|
||||
|
||||
Reference in New Issue
Block a user