[NumCS] Update to new helpers

This commit is contained in:
2025-10-18 13:40:39 +02:00
parent 8c34f7196d
commit 580928bee1
16 changed files with 41 additions and 38 deletions

View File

@@ -20,13 +20,13 @@ Zusätzlich kommt hinzu, dass durch Unterläufe (in diesem Kurs ist dies eine Za
Überläufe hingegen sind konventionell definiert, also eine Zahl, die zu gross ist und nicht mehr dargestellt werden kann.
\setcounter{all}{9}
\setLabelNumber{all}{9}
\begin{remark}[]{Auslöschung}
Bei der Subtraktion von zwei ähnlich grossen Zahlen kann es zu einer Addition der Fehler der beiden Zahlen kommen, was dann den relativen Fehler um einen sehr grossen Faktor vergrössert.
Die Subtraktion selbst hat einen vernachlässigbaren Fehler
\end{remark}
\setcounter{all}{18}
\setLabelNumber{all}{18}
\fancyex{Ableitung mit imaginärem Schritt} Als Referenz in Graphen wird hier oftmals die Implementation des Differenzialquotienten verwendet.
Der Trick hier ist, dass wir mit Komplexen Zahlen in der Taylor-Approximation einer glatten Funktion in $x_0$ einen rein imaginären Schritt durchführen können:
@@ -41,7 +41,7 @@ Da $f(x_0)$ und $f''(x_0)h^2$ reell sind, verschwinden die Terme, wenn wir nur d
Falls jedoch hier die Auswertung von $\text{Im}(f(x_0 + ih))$ nicht exakt ist, so kann der Fehler beträchtlich sein.
\setcounter{all}{20}
\setLabelNumber{all}{20}
\fancyex{Konvergenzbeschleunigung nach Richardson}
\begin{align*}
y f'(x) & = y d\left(\frac{h}{2}\right) + \frac{1}{6} f'''(x) h^2 + \frac{1}{480}f^{(s)} h^4 + \ldots - f'(x) \\