[NumCS] ++ Code Examples

This commit is contained in:
RobinB27
2025-10-06 15:09:48 +02:00
parent 573ee05077
commit 5634009e6b
4 changed files with 21 additions and 16 deletions

Binary file not shown.

View File

@@ -104,7 +104,7 @@ def fast_kron_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
# This will actually crash if x.shape[0] is not divisible by A.shape[0]
bx = B * x.reshape(A.shape[0], round(x.shape[0] / A.shape[0]))
# Then multiply a with the resulting vector
y = A * bx
y = A @ bx
\end{code}
Um die oben erwähnte Laufzeit zu erreichen muss erst ein neuer Vektor berechnet werden, oben im Code \verb|bx| genannt, der eine Multiplikation von \verb|Bx_i| als Einträge hat.

View File

@@ -58,7 +58,6 @@ oder das ganze mithilfe von Numpy:
for k in range(n):
# Vectorized differences between $x_k$ and all $x$s
differences = x[k] - x
# Remove the $k$-th element (and handle edge cases for $k = 0$ and $k = n - 1$)
if k < n - 1 and k > 0:
diff_processed = np.concatenate((differences[:k], differences[(k + 1) :]))
@@ -70,6 +69,20 @@ oder das ganze mithilfe von Numpy:
return barweight
\end{code}
Gleiche funktion, etwas kürzer:
\begin{code}{python}
def barycentric_weights(x: np.ndarray) -> np.ndarray:
n = len(x)
w = np.ones(n) # = barweight
# Compute the (non-inverted) product, avoiding case (x[i] - x[i]) = 0
for i in range(0, n, 1):
if (i-1 > 0): w[0:(i-1)] *= (x[0:(i-1)] - x[i])
if (i+1 < n): w[i+1:n] *= (x[i+1:n] - x[i])
# Invert all at once
return 1/w
\end{code}
Mit dem können wir dann ein Polynom mit der baryzentrischen Interpolationsformel interpolieren:
\setcounter{numberingConfig}{0}
\begin{formula}[]{Baryzentrische Interpolationsformel}
@@ -94,17 +107,6 @@ Eine weitere Anwendung der Formel ist als Ausganspunkt für die Spektralmethode
barweight: np.ndarray,
x: np.ndarray
):
"""Compute an Interpolation polynomial p(x) using the barycentric interpolation formula
Args:
data_point_x: The data points' x-coordinate from which to interpolate (Stützstellen)
data_point_y: The data points' y-coordinates (Stützwerte)
barweight: Barycentric weights
x: The argument of the polynomial (the x in p(x))
Returns:
The Interpolation polynomial evaluated at each x
"""
p_x = np.zeros_like(x)
n = data_point_x.shape[0]

View File

@@ -1,7 +1,10 @@
\subsection{Diskrete Fourier Transformation}
% NOTE: I'll do these 2 subchapters. Based on the lecture, we can leave out quite a lot here.
Lecture: 3.2.1 eigentlich nur Endergebnis wichtig. 3.2.2 viel anschaulicher und theo. Grundlage für Anwendung. 3.2.3 zeigt kurz code.
% Lecture: 3.2.1 eigentlich nur Endergebnis wichtig. 3.2.2 viel anschaulicher und theo. Grundlage für Anwendung. 3.2.3 zeigt kurz code.
% 1/sqrt(N) ist numerisch sehr schwer, d.h. wenn möglich nie nutzen. (d.h. ist bem 3.2.8 genau so definiert)
% Bsp. 3.2.23 wichtig: zeigt anschaulich wieso DFT genial ist.
% NOTE: script p.74 sum transformation has errors. he said he'll fix.
% Viele gute Bsps in 2.3.3, würde ich aber nicht hier übernehmen
% NOTE: script p.74 sum transformation has errors. he said he'll fix.
% 2.3.4 relativ wichtig (Einführung Faltungen), tendenziell viel
% 2.4 FFT wichtig, aber kurz