From 53447a0145ca92b50e1d711efa0c0b558aa55b0d Mon Sep 17 00:00:00 2001 From: RobinB27 Date: Fri, 2 Jan 2026 13:05:52 +0100 Subject: [PATCH] [Analysis] reorganize --- semester3/analysis-ii/cheat-sheet-rb/main.pdf | Bin 269626 -> 270131 bytes semester3/analysis-ii/cheat-sheet-rb/main.tex | 8 +- .../cheat-sheet-rb/parts/02_diffeq.tex | 137 +----------------- .../cheat-sheet-rb/parts/03_diffeq_sol.tex | 133 +++++++++++++++++ .../parts/{03_cont.tex => 04_cont.tex} | 0 .../parts/{04_diff.tex => 05_diff.tex} | 2 +- 6 files changed, 141 insertions(+), 139 deletions(-) create mode 100644 semester3/analysis-ii/cheat-sheet-rb/parts/03_diffeq_sol.tex rename semester3/analysis-ii/cheat-sheet-rb/parts/{03_cont.tex => 04_cont.tex} (100%) rename semester3/analysis-ii/cheat-sheet-rb/parts/{04_diff.tex => 05_diff.tex} (97%) diff --git a/semester3/analysis-ii/cheat-sheet-rb/main.pdf b/semester3/analysis-ii/cheat-sheet-rb/main.pdf index 9306199358b2bf280cd5b470da04c6ee2ce6adc3..60ab0f92b5582bd60bb696622364a39c347d93f3 100644 GIT binary patch delta 40453 zcmZsiQ;#kTux8ubZQHhO+qP}j!zIGThXh|0GJUo=eQHR_OOMV)K-Ny_2~laF7FP*@OiTt-`}mrWBLy(9BmR9@P3@oSV{EVi)SoGHzyv| zDQd@pF=Q+iW0V&Yj31rkGyI75Aus?wku*Y8#SgYoF6{<;v8^g$8AN>z@?<$JY`=V4 zJN9NYFs_p$O|5&hM&}vM1eoZjs~?S7^68J7833JmV?_(DwxJmM*9$N>av{_mHPsBB zs{{Gx7^nY4A0NTs+9%D z){f)9!53_@sVKbH?(%Q9HNpaBhk=#{urX?58vOk|H4#XbmfSpmom%2uPhHfVtR4`3 zQ->J;9Ls`72lZ)?3$4qCCzJ}#B+kZ_wV^)Svx^#HjO>Ln>KwNP(?WpZ^cZ@z_fp>G z(9ny`bWW{&2#$f$HgH>o3U2_U&AF!tJ;8WmoyN%8QJ3PH8x*WMnr2_CQWWY8*wE38dC2N! zAaPfs$RE`LpF{+9`!*&>vHXQ;X&}tj5Ohrsa zj%}MS&GB*{&DzXzas#nJpXbQ%&nXl|VMdCg^yZ@N`$aku?b3R2gK~rG5)a>pTS)u^ zL+J2$zHT4)=R9B&HR0l76+54qkjaGC)fNk&9UHUNy;$^d3sVTk$PZkz2K?jthdnR| z;|e1ivU!oD(DSh8{&pCgAB-8|EwP6tg{}pOF`(_|MQJxw(dfIy-ae7PhG&&M(9hmG zP@o{`L+vZFUW4IqUXk}*4Jz5%6#84fZ!yg&f#;>B0czZA2xLMY1^mi_TOAc; zFojbs?3URO+wbesnK6HsT_NWeZ0XYJt)`z+Z8OqxT_IgsWLu3wg)pHLpwDYF&K((? z+fwYu?g|Lf4M38}Ab_?xb>k7}Bu9mng6w_m19=0}2M$%71oLD95e)QwlFMutB`fH` z%r0!VTQGsyiyDAG>*Pi9_hmDf<9Omgv)0R1^2YFWlOt0pLPPws*IJOEyz5C*JwMUt zY39H}#8of?Ed@+Ql6}n;o` z1@nMFQ$#N}?#^xA`3IC*IhW&hknvDe3=;4oazq8oa_&A2Sd?E?h*`vYts7i8-JUKv zwo=1&Pg1xp5{K03Ueyzzzy^hzh_Y+i$|CM{h+3MR+U`xOZ@>seL{5XR)bhKh@fGpd zr2;5dD&pZ*KlTww!}g@3|81JnK`~=_2B)wl5T{5BO;#Dm*%s;ROcJ5bWjtda-s=2u zi-(Lj6x~2F?ntauf*A&292yJ=C`~sB%})7$FRcWLt0Lr%!`w%L#ejW~VFc99TvXxa z@_Db-TFX#E#u_D6{MjC}E)2N)NJI^|l?9YK`)k?PmIr}_D)9M(R2`XnH)^R!W0-(D%qF2+e!Y!GCKtFpI7Jp%!5FYVMQfzg zQ2`e{(qpvY(eFfEv(;kpELIj(m+1Ka>8osekXl=}&EA=r9<@?!XkQf$93g&tSOEw_ zW@N+G+29Q{4^d`T(C7ylo(pn6N6!YULR#XRa|=GTgud8)&lZ=#5)^4e!ThO#Y}l>I z|F`_AN@vUc*_SNJT^(K#8i#?L#UHjc473l@u~~|~W(L)IuVZM5ajwK93IREFc#Aq* zLXaYAJ;tNSl!834rBo(q2@MmmQwhL=xge@%I|st34gqGDT)Ght^4n}V8VH9EjTGXrmmT`8C6#Lvz_Q2ruV`%8? zLyNejMYj&ou^}7Qmc!lZQX>@8sU7-V(<}}xRg99^sDNR_K8EI8MRyVi9|Wjxu-ZQ6 zsDkBHOrD)CjQxJK?LwtjF|O@5p~3zU-0n&Jtu{|3^RX@pWGqaDu1RF&+M0gFe_DYl zbql;da!!8#MzpO> z@m}vz4;uDyqZ<@ea=F;9)CSZs))+w<@E{A)yB|oE%^^!t?*4z{wrT|6zrhLc9>xbmT$~!%#mc(*?xjt=EuV#|V0W z8FHe>)6UpWy84QMvF!qNXf7)^ubhBk>UnyVKraLcv`jk5+Hb0c49uXpAZEZpQbD7` z&=N%Oa=nSix3!}-GY9IFTAVOQQPt%TEKvEU$jfmC6Kp}s2L)UVbZ&uQ%<9&jWB46_ z2vW;j#8oFprja@gmH|ApQC3pdAZgi=XjziP{cPSgmYH~ZO!O+Kz`R-zR+~ne!~Y>V z)(ULdw*I{)NMK7J&+dS3$G1d|UF%wix+9eaKsEVxFby2Z%mEC(y6OE-6?sZKpnJfK zc^(wyIwPm>umYpVwI;tu9vyQ)59-Id8F9Pqy6%s0j%m*{Kf|xd46JkIMe?Wd6_OR z3?}oMSelINsrlaR+BJ*r%NZJTY}EjW*P85393cRr@d`(AnXd_HTA+U8$QwgoTVQ4; z^_qYVAILB+5U3@S?XiL94xnBwaEZGe{u8N*x3>l)2I#E}SVcHx#{L5AIb|_@I2m&i z0DQzB2vthT)pYY@RU^#V$mhP>lyn<{S{wBny?E2Y$?J|5r>vXf`ZZLOvAZa+lRTyK z{IxtLkZ$)Qx$hH{?%ZA+cTVk(5!HvY-+_Ishh;|?9lt#&(Zh-6)eUBhz9iuRGi zLE=_*N{o)Ys3|K7J)yYD{h@~gF~QTr<6(dpn_Jh9Uu->x9{c;`1Z`?({?z0a)}uq) zD`F3WJLa-}SAlDSq_z+Pk#F-Wn`c8KE^BM?2*3;TB(L>jUD)NgmT`TRlRC2?oM>* z0rd4#LrAiKUdFpcZow`K?%2_ANIga&)HccR9RM944sJHoR&obgDt{gf$+t14PLS@? zBAh0<^UQiLU=t7q8to&c>wx#Qot{JFc?|tPn0#+z;)ouaw=#2MZiAkU%8nNjI!UGu zeqQQ)u?wHF-$$RXy!CG8=8QD&yR)GF0R~xPFKm#WcqepXE1x8{dw4VGWLa zwbbNDoTV~IO*n$)L;cXpAMckvDCMRC^|24o3lt30aO>@oK( zVc8vXlP*|j?IS76%)?qyhdxC=+ICnVvfgcz#8aFj#mZV_KU(+g%~&{@6mm7Pm`b>Tlp&g4vwr55TM>YvBbt%7JjijhOpsEK_5&q8_`NSIK@kBQDpQ=vUvE4 zOKF%c%8LlyeGLxJK_^2BG=L7}2a$^wS<Qj1gpNyP`*>OMHk3eF|>kV zlQg85F(#d}Dfr{Aa3Q&_L8j#yhd!L8H#Guqe8jyxtN7tAxxCyh^#HV`SFxqM+ZM6D zGFPA#%asL%rrr$uON10smHxqo%9KQK1U|&qf_Cxnw|(xAIm-bAOj0@#0B$}B@FjD+ z;;#HmyYmt~4lUNgmoqP|fh0yk$siCzhU+jYrX`ozGF=-%n|iBX4mU+IhY4^I6bJ7g zMvBW;b6>SWjZf#+&=65vAd@no{=(s{VWk0g?=l_Yvk7v;?w&%#W+?bMRAY0jII(JJ zWlC{Fbxt=IeX(lab?lTgz^S(cSoE->UEeGN52CIVfPp2EHA5~82L4AUnQ4MtI+|^v zETJimY7Nu!cnF_<&9b=y99)?o20}lXcWXEzS@<(qq%~|kPMJn0r+Iw|DD@&alKn(p zj6~TNqxhyN@(6i;~x+#?LbgG6-{wSsN`k^k;1QV#o%xqAYfNNunw{DN)R`b zL72j?h`EX8?XM6-?)rrM4qc` z98X*w=Ky4P>kFS7pn4_WFzZXFSH>tmhr)KkSxF!}e%IfTa7=_dR%XZLNZ<1OzVe5A zIg5Qjk>t6Xr>HMfr^nnr*^UnLK?elr5vunjB{yjwy&A?AAS#k$`(>oC@P4-|GC?ST z`c^U@E*JOUT(-Jc7M>$RXS03qo+`=#g3u61ex=Y`ZYX)DjUhu#>(%vS7xDL>BsT*7O-`DHHaC%lp>^Z@VYQ}`A{ZuwQtuq{AhQtnuuuq8+@}1;f%+pCd|5d{ z=j=zY+mizT8YXZkv0K0I-B4F#yP7EudQE@1Vj0c@i0C$w4xDxk+J)%VrI=`?K;x}e zcE!&zh0?SSHZqdnKM~Y|^tR|BzXCQZ1I@&$Y$fjl_nU;h!Ka9~%qvqZYN5iPrvj88 z(!;%CqXsMv=WwOdI%9HR#}_MDt;P2M2U@ucp>Gyj&bRMV;_ZVke2PNpCx+IDl+t9I znici{U|zFgG$yKpUsF<#pIx=S-S~JI(#=x!f4PB*uhavlmfoA@H0sA3rZ&mBW!>O% zH_d?X5yOb|US38LY1* z3+yhKSYTl17|s8zqb18YuH`zvK;0xlA42VxQS;KW`?yw!KBd(D@))bu9WZC$mR=dK zQO-TwDB7Ey-UQU0aHs1SkOIpVfcJ}yGxopw1NVT4P9%ch8@XN^ZN6#x>zqqnJF#K` z?7zaz;Jt7k^2jdV=#u(vb$(mfz!%^we+l95(hfsgea`DK1c^>po&Aw)D`a0jYsFjEMWU%W$C%1Tt<&zQ> z&I8}ePn4=z_?X^b(Zq{kX`0Cewh6WX%NQuhq!xU|3aZyN(`q{DCr3s{g(RT@Q`@u$ zEK9g|5U2Z{YN%=qdiZTEyDAoWyJ@J#l)f>v&8><+s>7e9)l$1r`HAF6CY(mI7tX%D ze%SjCf}CVH$aaD86WA$ExyN6!5o+O=(2lZy&}gsgMNKqx>OcbfU%dK?zy)ssHrnu3 z*x+_skG^toDN1c=zED-UwF0UUbg&Qi$JuYL{z6!qz7s*O^0r37e_ezrxMqkWCUq-e zbGx>26bZF!qOte*48v+6k+8QAW>1Li6WxixBol{3fQi4 z^quYTcz=y?XrNM^37iXkjdXhen+dA}O$t%xUd9YkUR1T5GvFs!M(UBq9s^=b5_>#RmLNS5@*jOxflukfVm-1HTBoUNhO-Lu&N$Npy60e)|d2);}qBd62}(afyQb!gnkj zJ1owZ(JG1Ghx4h9a-eGTe~~MeS_h%bgbSjkRg}&Yfo~bxBk?-dp=@)(Dvx8C@+AaX z+&X}~o$&1aq1z{+I**wF@+5{f5hfXh@GZs*9vyEZl}SZLt5X9WE(>4!Ne%K+o|s#H zp2&N6rPYb>et&5{eOqZcp3H7N1+wYU&A^du(L1q=J+4S9uVq>~$6*r~-~KV@CDfif z2^gv=)SqEAJ4T2@nV`|ivf=5kgriyETE4qC;55eD$Y9crAO8gtWBXY8c=RZ0Q*ZmNUiC-X_>ZoJ;j;(X9^lG&T+a6`K3(NPc;yH9)jHY8|~a{T#A?xbV6T8lxj4h9pAgAhC$q!h4AV9 zZ$$r$^r}4Mjeeac4{SvY8zfIfxhOli*aJB`pxcOq9kA@e>F&54R&rmN)so$kL8b%* zDgV7{QzhEkY;}tMoUckJqP!vZmZqJ$v?7C1Zxs;patHKEI&f>NC7r_*k2>qvA0aC} z*%1k?bdl_dj$@6}eCl4C*8(wWF(7l;1Y3h}MCQAFlX|q&<-7CNUXNE+yDdvT)?7_M zUIGxf8#tO=h`7H0`91g7^L!d1igUMz??|6NcuTopaJbwm`i%`+8^P4l-3A+^SHX&9 zXz7n-ECMbe@XSD)Y!6~*>z~0qoA=HsSM5Uj`pfYi527yxqj(PEm}P|D52VHRHkbbd z07I|#1sV`-0G}>Hkm5g9C?VP2SN)yn-Q|issml=;RMYBt^Dp+>FYSDJv%H4FlGwkT zRRtN>(|@N0I8?P9+?KC{OFMb! z8U)-lH9gL6EPTUN5}&MJ-j3ds zn;MkvT9d`sNw4H>wlKf<{87)`O2)?0Ed|P%tDo95SHdePuv=YkTdjG@!+^`Ar;i|M zn%O;Pa~o5Y>`jfUV-eWfT_?Tnlh#j8B?W*ruD4r>i_2xU2{vx`kz?YAN7nhtslBw0 zRG=SjygE!(b38q+^Y7#CcY2H%LmAtw)m|T`!qKLS;>Jl#||@m?3$+b)v7x!@8O z^%c2bdrk$Q^IJ}wEYOUezuz;Rb3yI`unAqVTOLkA?2i)ShZx^1ic{hGDa z)2glQSKrnZl0xADBf4>eHKB2fXW6Tn}QTTFQNDH z{Q5B`-!jMmlKR65y0MZo6S9u$F@`c@xVTh=&Ei~seZ1NXY3I)w+_$%%U+g{F1$3b7 z&eA=$pSGXvb$nN!p3%3xK5CJTQfH=OprL2c+`dQuqwNM|FnIv2?RWi^a>Ow~@qr(OrWr~+y@k~Otg z`e_haN<-$qx@re9MG%>px@zG5w6GNgK!4O$*uF?Gdh#mDV&JAznn{g_3IeFirOd=H zvF2$}21&{2{`=Vw$xA68F_y68JI-nB=xO({so;4iY7;RW(H}*{5G-9`N}zj)vl+A) z+}QU37EMd~r+0{7#;_dnL=&3XC`YjxpBCboyNM54?0&XbYroI4=VXJtgOf9suyMqf z4r5}MhW2?5h5N>n%&FNJq4M0k-5T?B1^rSrcYH_qCvrU1%ER?j;9nz;?vY^4JnX8X zlL;XVTb2&zbr+nJ05`>1u*w|HcH-tT{XqnPDc;s(0kXO}avbDC8JB-Ii~TtVs`!8t zM^XJSJIf5|IBS)#S%9@#;4dZYLa2rw^c0y3+qO90CtM!yH zk>GaOf`zIMuT9v_Y6^Vz79vVa`0iFkM0l3oiykO z`zd`SS;~Tw2%XW&rz>nA{h$7%7Hs0sjSn=}}05 zn83Bc>(h(P)(h^b*N_o$SlXyljGgYhd)uQL=l9&fVrSOFf;fL)_l8QjCLrH(b-dc_ zti$HvPb4bo-InD1|j}mPBV9X9d1Qin~B|=3mg~^!4FA(E)+5jiKpx~yOJ&b;B91?&i z$TDL*%PwR7s&@yNzyRqRXqJ23?>nG2XFdDgr3m7y+WzP(tYfk9Tg*mm;bOfE(q#RVQHoJpA0f^#gyx>oO7*$ zLXhTRT&3}qK;jfZ-bLaApbEmORzcVP05!)L;Bs2zqyK<}dih%nmp@Z@^u(LN!c-}7jAPkha78syMIX|bvyUke| z0s*s+?pccZD+N>4L7XH3YY7md)T`&gLq!EnS-oqv1J7#_ePX~jRD7+r$Lc-?Sw99;fd_XG3MeRf4MD46`gFVJ{dIN{Ji-4GQcWmxc$C z+k@_I??gijh=!ZM#8#yUC!K_EO9-K<>rlLLCCkWrfJhnC9gG@H%Qu(N(N~CaPQXSI z*LdHO*OR=(nw&Dr`Elm9+H5E-JV(fk7amGsmc9S^d z%OG6YIQ@o#mGcF1*XEbd=#jrvGr{*zRn%6RnyL6|t9K`qpcotHC3TTeZftd*{v?&c z_ zJ@qY9SkiC1wt;OVC4&NP9Q)8d4*cp+_m7_0Xd$!yg_ zn1XA-l7pTAJ8Wj;PTGO4bVz^gtH*Tpv%i)Y6$q{dkvO>GokuouDNTR-ue;BfkhK8` z{;bBHx*w%I%Q^ETxtgvQJXnMCXTD%cf47!?f3arf>$h5|B#SmSw~JJFC>X*pk+o=g z?pP6h&M9Q$1M^Jrp-$IYi7^*BOZ6xbJ}Wf<{SO9bBbfM3x0x#{E6|wuxX{8+Zq6fN z&K+0mNEO@Uz|?Ui0OrwS$Q`4Pgq&#>bu=6 zv*CV!&(?0iu<`ez+)4aW8Nv)aQ6 zK9hr+68_y|#;^9B%2iu1xM|x*ATB1}GWAwiP96`P6>jlUnB^g3RAX0S(gSnULw&O| z7XmPFNOKT3Dlo8mb2`r&2tXU@96kgdXuj{xV{K~am+zn^HMDsx@1*85%50}Ysui`) zbgVUZsB@9SC~^E{BgT~WVdIK8G?_*gt?(iO;>vK!T96AtMHnXV1C=NdcLAOY4ti-k zp&-L(_ze?hvVkDfP@v4j7;Mm;b@0roh!fheOwU^U8z7H98fdEI2Y@kEk`qNgElwV# z;^DFH*IcTuhlqu`V*Qx%xu79tA2UIlm`(1uQJUBtlPrx|5s2_}uR$Bi14`11@{n#O zSM=!CV?ZFk@kaZj%UdjpyZ*I^_Qxk9Xi%UpsIdF}-(XJya5=NBHV5U3&dl(n{X!OI zos7C?yMc-Sb^DJF3gAS-kvA?|Wz^@E#E}zmU@g7m zd44F&sRl@N<^l)%7g-C5srYypWwhd6^k;DxB{`#Os*Dmvf_BESong(lC{XU`7>qr0 z7#Zi>bq1k~(@uh;Z6lH7!f{4-JCT%_#_(d1V= zzlH3=EnDO7(jJqjG=pB~E$l(1MG=>Kox|dva!Gc*$-2N)M5Q4(U8PxtgGg|4*Vco7 z8o+#Jy!X@y1IK{6d{``>(Q}w4{r3K$*WmTmF6J zZh!(bbbB7aW5fS9>dZ-Bz)UnPm~p@(8+w}j;e)D}2`3L3{outkf1kj^V>@~k+^Y!u ztG2hh6d;YpA!||wh*TP98)#Zl*ki+uA!ep2o|k-p4%*(T!k&qb1$p)j;>{lhHB~7d zkUK1r9#T=<=bq>z2quAm1GoD_4uthb1;>sq9<~4zq1;izoMX%y-AVEUID5u54eC{% zofrib;`FIuoy=>}J^J5-DgslOs9{gv+%%>F4Hb1EW z=vd=fH9e=f<4>r+Gm&c>vl5oMXb0oQKcDkaD9O{n0=*dOuC3~=7m{n^-CZBiK@xi5 zr09~U8NNP?ov){GQMC}KrN*3SdDO%@fc(mM0Gd@J$DSwfHLk*mI(4QjL%t>78tm(e z0tlyc;`l#?Fz|wgFYQTBNx?oHzojV44`Df>h_>n8zL13AeyWDjNq|4Vi3oaUxXP$m@u+G9Pto7;>N0PT}U zw-9_iaxtfNJ@M^KEP~sPGw}mkTg6JOHpi8G;_h3*RMHfMe2kx!W)6Aw zl^WQ^8ZAD{2hlH&XdIr!z`*ct9L1B|sFY>s^#oi|Ykb_xAYm*;yhnRX18#Nhz=wL` zwwXt7x%7Jmha|-qn5jKF5Jz{jeOJ2wCcPq$ahc;;)5sO(H!S*8P4do_==Rf4B*w%7 zpPv(3onB>4$wMcb$yNV$-Lau?ZTf}Y75|a0rHZej**nExpi0bW%8kH;mv_pds^V6! zy*x>uhx(v2TzMpvxDC)A21NE0g<`t4=Axdamp``lxqRUu&=7-46d6jXc$&x%lXL*S zFEAZ$Zth^=5dX44E2`3Dk`-?i)Q(a2C~n|4@}fZ_Qb zz|oG$M?(wdTENOSNppNfvK}%|{Pb5t9Y=B8i7)y{XZS-aA)tk6N@b?&Nz3Zj!HEsG%Z%m`k&lhckF z8hVJ(C+jU*#A9Nd0LDS#HZ6OQ>R7x~7#6laE$S{!hcZ+d5S$t(NEw7~KS*H+nLRg^ zERRWe{z{~Qc;~TcL_QlDe`=zl--7)8-0u5|IZSIXla0GFYL@A{SC$}CxbRD?vjjgJ zXU+{aI~5Z7^%XHXe-iZUrgi{b@Wgf}vJV~5%vyIMUZRD(0Q0Rz_Prwn`)tA#c@dJF zh`3$D*r=2Y_*Vo!k*N-;#NK3PVqs&V8WIzga+nm$;zwH}&qK12S~Kd= z13+{yK`w7B)$PMshzZuh;?+rH4`+ByM)KnUngnecH16?<=l5|@;_rL!Zqy(~e!v@N z9U5G@a8*Yt0D%0`7@8D14el;&_wK!jt4_QjD=5S&4ow7Q<)#Ej8cIb0dkZf9F#QMO zakoYg5eV(jkQ(qGD*X~@=sbK_zHU$d_3tyqLftxE#uaOGZ$M-JsUG9~h8ov6_4r5c zEPIeZWmHIZ%WUFoa!s&?FlV9A0j4_8ZT37&<6F@L$T^mQxhj8q;V(`6Wqam`ucAjq zQ&*@ys~ZYeE6*Ztn0I5ihgDVnM(sbEpC&k5FY>(arH1ME=J0Xm@_DSv;V&PXC8+66 zNE_cRA@Dx|c8e{)xu)nR$l`*7OpAfaTY(f{X^5CY^&mX#X>e}4-@m_mip?*K;!Md` zV}lI^tW)+r?={0!Ohv#${NuV{XZ1Z${85tO7A6HeGnbx?Q4D@2|A%+F?}BKHH^7&UPK4 z8~vu1+>d&pJWSD9X~`rj_$4ZvNK;9`W^n%lpy|dt(p5k8YM-eKGRQnU9hy6G%J(0L_XG_t4>=5SGWP90Wi&>C$>^lzYEnV7(4&RpR2=RYZS+|BnHG3tp z039~jphe#tHhEi&57!byOs~!Iny!uJVOT#;tccqqF}ETm=$8!%Y#;R(W?mRTkO4OT z4_V~=f8}*nW;W*kC5wPt-CYNgb|k>7L8F(I8SB>l=P^9h(u=ncf>@%=HzMI=uyOs3 zob6`g=`@?&@9UgnXZMLUX|3tzIV=nqS7h15q2n0`0d7)i7bgSe*Y7k*SpL01(d|5i zM1F5t+kGj=5Guu!u#*OLEzF=ynX8ktx-XB?_K%+5D8z9t48g?B1ihDrBL(y=R~P5Q8ZM@b9iTAE zdzVKWz}SxU{|Dp*y1DWJPTZjU80Q`vQvvoSJ*uN>PpPn)J&S^$X4{4`r?K>+m8GCB z&d{^UTASZ34qS9`AxEW8Llm{?8&xvos4@Wh6uMTV2B;|ixRT0Jl9=ROX-vQul0V#T z@|~T=+p3roD?{9#IJq}pQZ%7(7_7aE@H#8tLabIxMd5aw2nWk!nGAjng02>Mb7?5e zd4QlU82MqMqoM2M=~8XD27Udg|CY02SvJ_-hF)e84}SF^M}5}1k<+Ha!lYPkFAWR)MW0y6{R+7S557%o2QtZOP*tH~S%$8MVSud9zMY*dz- z75$cB$*VIkzApET%oWrqZ^lF+@8w?sMbGVf5T;CO+GX3Yy11{fBQRhl5yf{RtVLot zEKWB_Rtbh`3qPk|C}nHYpC^R4Y_hGG90E9+>X|;6R(r26o=>c)lh6#eCyI)Jt62^p zt}-_;^qLFCMC1Et-vFCAo9|pE4W1%rB$FB;;^)M>TDIxAvY5}Kckt&6s6br{_~@?^ zTHkjbn#KJ%hZy6kVI`pP8tnrg{sm?6D__EaB;w?+IPNr*B3AAk?k2HTAaW%A7%m?o zTokx1Fy8cwaK{Qb4X|*)Hu3=1-*EGhA+t-{bGXrW!}o9BfX{=d(q$%RZnFWHf4PR- zjv*m#$r$-6{OG=@xivZC_{`bqE|_V<)N6Cp*qpN7c)qDvcVqzHE7k|HQFqMoNi_bN zprsU>fSm*0ptXz*FMqrn2yiK&&KQKZ)XNUw&zmsGl69iRoDgav9&$RVZ}pzyK#&{R z**SaN5{3k(C)BDE2V~Ar=eF zb>2|?5Eh%jPa424=NC=}%)zy)b!%a{-Ot%Xs#VU+ZAT0Epatwtnv9gf3G2Rd@jt`q zc48a$AUV2eE^K|dY_5Bl%w6+ayM`BLglT6&j)EIQq_P7Q?KhPwMo_iWnfj3!&@Gg2x2JK;riQWYLzEq0}N(<%)6Whg4o76w3)L+k{$$P%c3IjA9lh~jx+ zk8To#P}#x&CQ~Lb!8*JuyN;Se`G=Yn)S41qsqMOC9q7p9J04ayDTn0NoX#g`ISL}S z@i)TACpb|Cdkr5}SvYK>O}@BkB4#Bc8cES_&4&WKF8%<)sM|zNz~_HG1yFlvQ8LBg z?W&CSA7ubL?36)Cft@1*tMw(FH%T zeURmw1Jcj@z(NRZDV){RjShnW?FdZ6lTrg}1P&(S{Ynl;ttniXHgu)PoI@7rw|a6V z5U=pNu<_B7*z{}s^{K6v0fVu8YL>}>Kq*sk@LRbmhB2lPI0poUa;PgKahVtU2>XD( z9VDPpj@yPOC6rL|St#`|m$x+ONCvo1FoB|(swokh1e9!4U8a(Nt%)eM2fVyN<$?i9 z3IfpIO2SPsx7?NbWZWPgY~_v_C6KA{pE2q#p}t91^QcF&zseQ=$+*^ zjmnq@7LW^SWqBx;p&UpZ8<_r#S>(h9rv(7i*GwByn*?q5big&wyd|Gv5zRs!0{NbJ7L4R4k34G@uD1I5LH_~D0M(htjR*)# zkTlE4#Hy8I!(yxC$J^{q+9YI*y=B4Ic{E~wa=N4hhH<5RaUeM`!7U8FgQ50D$-;>J%~T9K{QO!zBPQak;W8E`XsAM6fpEl`gvD; zZsggh(-;%3MH6y4PKxG-VTyMu+g2+Exs2?1D0nuUsk zyZ2G#*Dse^iH3Hhg1LBE4SEh&TycOvDA$4p^NYPrcs4veB7{R$mnUVsU=ro6flm4_ zSCYPM{3(b_S>UA>9wMS{q~{@<2!Ij6x*+qp^XJjTBenR=<1c%jDlRjS$)Z zV!~pADk8tTsUu0g(S|pfvjsq52nT(AnGw!aolkJku(=0U7*eC!(m-HkteYN9Ua_21 zeEi8=x42QxW?J=q4C2N>6AZamP%LVkUtBGS2@aGli`nQ;8|L++lSoU}tF!?-)^_%o z=n{wjG{>Se)9Hp#Ut+2I*kXesN(B?Uv{~;;t8uTjnf-4$Yay=91(47v+g!X+USne^ z4$-j$cZqkscdoIyulVCOB|3SOcZr`3#6O2q9-$Z})h6LwV{h{d^()X~R^!8XX zr*kx$97tq)hJ`hg0v>R&g|nJvXe^8omZ0#dM* z3WXRJOLL!%Xi|?*j40a7*~9mliPFNuh@E4!I|=a;(DQOG0EVi$crQmhRaTe$nP(}E zdfV#<3T9~g4>y4Y;_t)MW>PQksCV z`N_lVCf*2^kohIpD_U(gMv)&`51W?*Z|Kt;VSno;hPm*nW(cAI#%_o`qQ@j%Qd3W@ zA+OfZ^By++Mmk6DSBZ^I$N=Owd!WW7%GHFQhz!!4~1MT{(A?p%>GzGqzCx zEN1>WAg4oTPknkh`l{xVxgXxi##CR2I%oWGMi7i&H5qvD;YemYh`>c^rxs+^>A+HB zpIWm6_OSqjHC)4-IA34w3GZrNb77|Ag~7qX!mU*knX*c>vP-U)Y(C?DCzwyGvH)9! zy22g$ZzvU3vZ`af1lS{#in~j|Uy%njpSYe;0AV(h|KwUxu|)4XbI@hAJgc)R6_($+ z$eVA#`;h(pJ3Mw9KhIf|8o08jlZs-Sc6`HhB%w`E%9$Z5xifiv_03o>->d`k;`hm3G4K@r#K;*&r(vqH=_7$M4#k`{>LWf0;`?YpjvuO7V|P4C7?w_U;FnWqX>Hl^o$uh2SdEe74M!4U(Q>T)quHa)O4lWGwq*<}G!IEPwxk<1kCh$L!U}vGsLvtK2cyaKK|_Dy zG2l(cCwt7`FyM}U_;|Iv`+kx>Hj+P`f0yiNS#MYC^`NnFbyKS%cGb@LktXJ7sheS{ zX;Q1fvVGilDPNR&n!;i|dY>Vio`dM4+h4=Pz&3+TZ>~OAst5ka1^w3*#pjq6a5sHS zl|jVaaF&-!1C*6mFNn{r_}kJ6MoPjlBB}zG1JCbw4x%>N{E*RXI zbWT=g@vPR`QC*J_D5I<(Z{dMPJLZhCLE!Ju+)lzsN9^6)WM+Yiu+F4KkaA4>-|0?! zE6o~@#O~LdbIgVt&|fXXepwCy!qhlA+}@gW{kVtYr%m=aDLt5m>BuNcXEgeIDvphw zX20!feINic}{3t7Suo?KhsBqc}r}S zolT_a283VGI2wr^FcC=m-KlIVt_2vF99kShUajZ5y?vOX0lX32~c><^!HxH^qpWK z+m7;Pledj&M)yEEU)PRUMLj7(UZ{FDW(?I`-LPIK?PPbaVH}?M7+FXDZM0tcGn!FJ zSx%^ToYm8niMyS+`S^0y_Th7GO8Vq;?y8pTRcILTtS0kpSxCcj~%~3>;9XW%5+{1Iy zGe$u}+1{;lsYC9WB(j0}TxC|{SPg`O(iAax++9Y|ayA1%bUwMlbG}SD*M?N zR2=`ch_bg95A+mYC++kJzJyskNmKY-O&RhVw4cCshz$~sRR2HkV@w5pr!;7VzSk*^ zlorKu%3n~_D4y8leJvh1=Kov1XJKbb7y1M8U;AE1CKat$=%F?Am1jSdTu z2*7lpS&$bjc$7>s4u1YBRyI>lYcyoimL16jP2uo$YxC520T+(i9VnLhn+d@1yAre>#=1oFTm)3F^j_@0(j6!XkeWV(}rk;xu79C zwNQMlZRIR9lc1|2Pprkk453*|lSB*YPIQJb9=fs>+HncW3y=mIMOUz2JfRCQW%Svv z0!9W*hH>CtplTg=UA93RobbU=2mA1^ZyBsS2pD;8bH-!75Jd0AZp%d0>Co zM)px)gZHo*8sNyHd{LAo4)pxbdhsg>1#ojc~@k-7N#`th~7xMx0lv%cCqzkWHn z&&}PttIxg*CF7@jXRZCakmo{P3Rw%e6!KcgcQ#si{zb?OAU_}%=LO^*o+L{&hLKMspgh__}_mYUmjrC z%#*y_+t!YMy|g`Nx|&-z0C2>Di_IT0<6r0L{yn#zE#60#WUgZIQ|8|!3)6z$`bAK~;ZUMz zv-F&|C$#_L-2HM!@vR|oCwklSkUb~$6%T>@n|b;d%b9;(di(PwG}iC6gAj~p25 zB|z89nbsdmJK?>|`h0%z>ql5aJfecPb5iqW3Gl_nuV-uAI%%IV{WdAkm&@*dt0l=X9=TvF0%4Qf^`0296M>66<-)F@`At9VeMn36sU9&eFro9MTl3JCoTa ztoh7kL|dm?!+Ff!=E>Lcd-(3?bEB_}{x|yTQC}Z?>zH3Id~S4q{9_J&EP(K;w(L7E zxQcP!evl{oeNXlu>dF3mPxj|~vOnOS08qSz^Om#vAhT~M(S1J6e9Gm1BlwOG9HG2` z-3Z_D2pFI|B5j2J;&?i8^o;0T9CJG?-oUBjY!RCWz@3270Nr;;aLmQ4XFvY= z>e5Y?YPq^J(!6_@Z_+!8T2G04FyhwK3zRY%}&8& z7pAtQuwU-9R796fQ%3sQX?E=(Ee()5Kmpx0mF+_S?mJz7$SCz7ttmmqK6N1#k*bfH zo$!(Z*62}MaKMLKXp3=5XVK0-$RBA&!WKHMHBFIUEGK^O!fRD_?{cV{zFj-8p1ZQiI^@lvUYgnc`MC39t_sq*Qs$~fo;d0nNhJ^Z#x;RVGh%2IBk zOwyVKaeokig>wkvJ! z5%!&YhLuT3JCDlY+mIsqwS9WA=TMc?C3A&+D~egteV0+!)UD?r_R3Z)(Rq^Hu208< z14mjB%QRTbk)zZ|ds33Nt6)t1ql(O0i;r-Eu=a zc$vC?tAzan7JwPof3E;zjwrQr~y&RfNqFW6FDLF&+1V|G2c-dormg?Iy##-g+k}09LtCLac1)QbNONvnL z79HvXqcZl}3sq5Yx8TrTSfBk1RPf~Q>QU1vmIi+1iHLq;z_v9b&{~^pSgzkBIg@sR zj6>~nXg{QM*t-rsOLTu6e>2X#e6tw3>>DH3i9x|PrVctLGqWN^uE@kkACg4on2CUY zJo9vQz$$S|MW`eWnu<6%>|>O}b!-P7KS}-&hrOP&`%I3?wyvk`M(((khA6Hg(Jy?w z^OoBBNOA4@zN(9P(D^guZ zJ44Nl$=;bdR1qDf#qBf5<_KKs>>7k|U z=$3Va!V{EQ_*=yhq|vMKBg;`fN@MIJ9YX$lC^7LIo*jzJ21*xyA`+Jv%u1bfq{;C)v-587dt*mxj8ffGQ*F5+<#dGQqPCv zH}84*z{&A@vtBbV@h|Q60~Hq4*RC~k1zK1s#gFgEy_0k9kKbE`N*y(+J@gYjzI9uS z68#ELzMJW;jM0fZOL7EKBmm~uFP3-w32zpAZb%jw)o@*DoWi^Z+)POi zxx$`C-xF9n57@QjNNL@wRn9yYSsF{SSprWsUhtKgdkqqpQ^*&81fI%zKS~I-!n0g6 zOx+VsztRY=)cUQoXp`4~)z8O5qa{QmiGNg)`8F?HP3cZ6dW0p<4AJY6NQvH3(`lC{ zmeTDQG(0)i`J`B=%;Gd}lYeaBscmJ?J+Dl1s~vf6cZVvprMemGw#0lPYUPcYo#ceK zXub?@PE&4oYtZw5hn*pm@?a{6FN9ZpDfR5jPxp+UPQa`aI;8iB0jR7nc z=5m(BN27xj-m!c6Z!HO;bP(BB*nYfWo|(KRzNM$?TEIxsD(8}87-Zh5`DkJh(x__W z+l5Y%S-8k0lb@vt{XWkMunH6ST9}cR%DUS# zY)P=JEZri1_beeyE@^VV1H{?Mj>uGu$$c)8(AOZUuZ%o$<0A%;cqZtrY}3~`OVJN{ zyd;$Wu^a9;lrHragA}|(6a%%aOmM)YNeeJ7>4|N%yM(twe8|6NiOk@nbZLQjhzyO6 zU#>!Ac0&1ucxrAg+hvuWhiv3QAjJ?5JD-TR$P2_Ymcd^nKub&W_hswYkMoQPW8!~` z{e+1AINUqRU%nZJEqhAlAxe65NWckEp054}dnOb*mvLhO6O)Ux7PB2{)-02N^A@uS zmxCOa{t^Kcv!Ju!KbJ>10Tr{A^JpKJgku2~w-XZqGbNYhoBFHB`_XLM*XATcvG zG?y_D0~G}^G&wUkm+{a6D1Vn_R9ssYpmBEz4i(%f+&#DlcL)^j?j*Pcg1fsr!Gb#k z4eoA1gX`3L-Tjj8nIE%QtEg}LK4^5VcBW>3wPNb(z@lzv>F5fQdG~KCun6h5%pBwb-~MMb3IP7~_s=(d@SK_2+u3;j zHvjvgS)^1IMI|*E{%QIjwV0T_2f&+&n-##s#t8(l0)KgV0o*)5fbV}tQZ}~ycO`%L z%GjCN19<;cF!-eYQ?%Q^CxQ0gi$VwZ?^ufV;0Xo+Xnzm99*`4g0{&qA{~r6lUH)Iw z{#TU$kAeT+nj~FqZ2q>O{g282WnpYUt3HsL>i`m}(#6E$UqkaRx%yu#XJcsxQnq)t{Od6TU}6OV z|3?SjGZSm@qr@3JnSZN5;5GX1loEC(_NIUB8yhDVz}U&j*b@nS(O}{Pc(Z~R(-h?K z_bdZgnC(!Yrvz#{XTH~=iNzX_aO{x^ZMEBq#KcE#TW&aU(ifd`sJ z`8R>HtNbQ#KGoj@&ZqX9z`d*gCUAC*e~1^H-S{732WL07bpVh4U(d0BY{1eFzX@EE z$$vk@3D%j|+kmh2Ka#(0m&NoC1lI}r1Hs2+_8Y-Uvp*~Zw};tvCGNSEJ- z0j|cy!U^=p@qo*9aku}&0UX2i4+J;s_6LF+aQ}^LU~i8<5FFm~Z~U)KG;wuu0>7F5 zeqMst^gsOfYY+tT0GS{y&e@yr2U*nxwcpi<61g+&jtjt^rQB(;F^v}(Ah`5POn)10 z#;ImzEXkEgF7~lX8d!BIiaFk8tR@Z`8*B9lBYC;RYa?)3)pN4)nfG5H*N zGeoXtk{Bspu~R>UGD##x7oxDKdA}+Zx(`iV??SvgHBN~nw`_2`Vn#{plhv66@OlwIt0oQCE7K?+;s*tEZV(X%y!KhHynGyQ#ix7sB_ER%Py zWY5B*e4c$$S*is)3R%yCviI0@_eQu)A^XX*ys$HL1Ha^VG1fyh6E6aHbALJGft5Ud z-#4(dp}vAz2UeZ5B=LF*&5)KJyOd)vDm+r8&+i)Rj9u^xQm46`Ww;4!yC}svgGke? zMM>vltA3KEP_NjULYayVMCnU@Zl21|VVyJD;>4(}8cEQHUWSsgwqdhK>gwd#tmF$I z`Y5v+t>`cE2$X>HUvkrVKYvGi5?!hI!r2@##}CT`}94O_Hl(6uBYWllpY3-Qcw(ePJIy55+w zfIv2Baq9L${n&?6sK-hZLzPcD zcvL8(h00d<4(GhH2>z(-*+}6vQKi!3?Owvg0uCu@UpXcR1lA4OdP3|sa04bXs({Gl zc{_DIC<%NiI38(0%P4Y`FC)p}_jm9gTe2?BD$bJO?@}uRq<^XWQYGhlv^VVo9%bU_ zsJOFFBX-EN{F@QzD;lRd>DTfw{T_{phfL+BR|Dpt^`>&2w*)7vQV&PzKJRf^YJMNc zVi?8Tp#9_sdAgpYbSb{fq(OSz&qAcFWnlj9lfW23A=AT)`^z~)w9RE)-B7xq3(E(z z=4owV(JIIOsDDhjm$Jhu#X>h-q+CsRe(Pu}v-4s4?gtQzAOTNeAi z@2ELXrw~$67r!xPmgQ7^(N3IjVU>aeFY|G->&78#ZKi1#!x98ypwj{#OH^|&qYD4f zK~IzU6pZS{h~DfQg5}FM4Fa4dEwN`7hn*3P)33)yqnVtc1nY&`W!7!Nu*INwXhh`eLRBxtT(Y@ zfqu$C?=+iVr4#syMfk|(2tF%^lWRNZWos)X`BH@hB1#2pJ{Lc*hEx(dp%{JE%!Z14 zQl3x}%U-P;XJ!>e(n>dL=5e3owZ2dw-ySiJTz}~*Xa%j3eAyUocmNnLi&b8}@mda; zkFO?0=p)NImCJ!2%)j@g$q6(k%ot|Bqnvo-cebd#XSp&=A8i~?0ux}~pg^JUb$<~g z#^~AA%=?;!{9O{;DlnMiG$kS+Cc-6wc1`MS!q7Zllz%uyCPrC51V6jyL1o|>Y~iQ- zW`B|9J@&w$Y~?J-{Yj0Z1%UWgVyntA-YV2GiRZ%cY7avaFdEiFI}{7wVpGJf@Ey-T?DFqYN41@(`d*y(b}Yd#d;$SV`#eI%@D9H^@|^zU@~-H~DPR+evHL)} zX-0#E8?gI}BWP&a?4gb3NV`CPAK|NH*OG$5++bvpvQ7C4{~PRCD4Y$3!QBqfRP)mc zTwlVawNTDX+dJ9I1)4JWs7+i)fh=05rr=+T$}Puaxv^PsC+Ko*|<_peGH&Vm!x5illRPlxO_QU$n`Y3Lf(|VH!dNrZ7@mHbfm@7@W0k{G;8%RGV%utn7ls1Kck zDv&s?Bc4sCJ^4CQAb^$XmIB%QXuFQ9Kv(23>m5XJY23CQL^t7{Y_-e;jY8q+(viVn z_B}js5%t1CM>mBycb$r!=50?!b7D&B%SI;h5^WON_7_OJIFeWdy~)}BI)C?~_6~z9 zD@%-ki(jHpYbUlas$?ehipG{nG5NCJ2QH#?qmkz4IJZCX4W~aH>pTRVsHQJ!!X)K& zd!J3zo=jtK!Rp$m{OW7@Jgbc-{kYvFNA=&<8pn=%I%1?OyYB%iIS zrU~fZt|GINedlhGbE$RwnSaFl*EbK(#N3Vw(_JHT^7WWU`NHQa9GhSH(m07;*#erG z*TwrJJ+PNBQES2;Y)X1=IJjRIKKfPWxD15JPZ|AQH|+J2cm6j{R)>`Er(qovM`lwFInav9O@an7~MLLaG*AkolYn% z^G?Yg?hB4(o0?1;`JyPsJe*#AJCgiO`IizqYj`5+_$EU{T7NZV(FZ z%S|XU?`w$=OiywT7Rms@I>DHqsUiwzFDD+sa9&XbKYDoCF`St+QXwTZ_u)Vu$z6k! z6GYYWXk*GXB7f{t=P|Er@S-)x8wXz;Vt&Y!c%j8Tnwgy#Y6jCK;%JZzaN+t$b-Xbh zF+IJN9G*yt1kivT2E)^bMZwcFU#r;o|aKJcWrJ*|kXT;k?NjGi4akJ&x1c)l)zAJ4q|lej#U; z$fl$|A+W?pS%blOz+i32K7vqsrGo2qKGDjKP4@5gZk&eUd`QE7(uqz_`6P2A`NQOk z+WgWteSd2nQWnUDXsxs4!s&~`f}Dc__4UB0_5^9c?wZhxm6l)~=Ix5Gw=GJakirO~ z*c}?+O;QhyHfw2k-Z#cSO0tt6#(xe}bxZ%G%dwasGW%)pgJEhtJkLc@P*W|^p}g$F zQA~s(YCVbCPCjk~y!Mjp>b8V;^D5qWyd97Hm@Bu3J*X_oJ z=YI;)qm#tQGG@+>PdA_U`8pPEvun2-x+D)%MKLiL z%2wddo=Uw^bkanGVe0}zzRGdNtom-k|a?R(|JLY!4AP6dpj?xxGix zJ|2B|wJh+(rKAnB@HWG%Wg-~zIV>QgEAzgnVciS9THKX_X`}iG!TLdZdV?!My?=tX z{)~M)T?)z1p}-1v`{=Cr;mO6kP)?5K`+5x#F{>@j2JR&vN=lkKeZtWT?Ny{q+cf);_$`IpWlTBd?B`hTp$>?}>X1T) zuszpN`yedV#{0CyWIBPJo*6P-Sbs%AXI%#0ewMOyiX|7h!kO0IPuydIJ=GulF1@Q* z?QJ*Zp`yMw5;G?M>dz&aDk?}HN7;GS55LyP=|6J2x>veO7i!n26;7B0MS7@od+U2g zdIrozsVw!|>)_AvI2NV$ZBQbS?r9`Y=c;brVr8HUcQy#D6!1|2-KIv2^na5%&d)n0kuVp-HEr%Vn1LS%~lK%>}AeB=H2z3UM7d2H?o?(4#&*n!rJ zl~o9RlSM#-)PUJ&m9_yD1_K^E?bH|Yoe=L$mw)Tba+g(eYxP%7hAhi}t+EG=(!doM4*muX|=lm#) zdtGSHg0IpX&q!PrXzZ*#j8SHwMMx`=XCDQY5V){A>0_fBES8J%@qa;|aeKFhx+R?G z(5J_l1AhX$-MhU0?);ywdU)kTkb=iD)xwSF0qO$tUcxF!#l6EOo|4M*q-Nz6bLKjO zV~(d9N|tl_OwRsc5M>`G&<`$FtNr%s$tBjiN{dd>1G8rE& zjLg3IHUnK}+Po%0i+?YE#1;4vMq}bebVO%0(+C0DhOs|*TX1(cDltrAqguzt)Yo1I zFK7*XUixJ0V!)$PN~0-`ez=`wGbBSgh^H6(t`j{yest}VVTEU2A}zKbhi;WqhQn~3 zzV@_v)0V@&{izZ|s_*mcWTs_xI67(ruCMph74_Rhe*&jN#eY1GifcdJCfpITvFOOq ztyaWeNniT>sp4=Dzc{UQm-ncP;r?bJ$l~E++@who_Z6bqsdFpX@DHBL z*F0=WS6C7}xKHR6=x{i$V}Y@}N4k||j!!#RInB}BZ}Xf`-*>JvV+oFu&3fmIhByX= zFnt%B;$-9q5~h;*%4zeCzFB)X6~ns7#mzoVI$jnx!fFGCG}RlcPh%XHZVAi(!a!%x-2XUEKK{lE z{{U3sz-NO8?D5cU*diHTlhUYSuY;h#^D~^(ui>65w>_Vf)F;a~6f=imjUs{zGZ)d; z)PKg!aknUXq46-MzOW8V=Dc~3{=9&n-Coueps(^isoe+SL&en?Lu-;_C?BEkgIt$j z)X8Uxy4$ZKMfNf2+Z@LLNd)m<#7@{F}%01sS#~ftd0Z?whvc%u*mUwlvCos1?%a2 zd$>YL|K?!Op&wWi`J-sx`t5ZcC3Ut(vHeYfcG|&N>;_+F-^|vvS+*;#Qt<<7rGI~P z$hEvUj0eUE3PXCqN0TThDI3*r$~W>rEFHN+G_R=r@yFhBX`O=%+0od!D4BCJ$KD}y zPhAFqaNquZ0oB>V^R|PQR=fdT!QIf^-mJ)GjxvH5(#~lWFqH^pA zrGq=D$1AV?T_VAb+nG9+uGv0_1z&^}23KzMTcsbs~oqO=Y6vZp6{F z&!XD$ud=MEysABE`4FrnO{q)UN4HWGaAI$Dln|b#@f@KSvgi_^VFz(8C3ocOS6&BK z#}YcaD1|v)qf@Fv0rsyn(naaFL)d-#{teeDwRcF=+t4_KBwnfN?V&<}mw$%*d-02p zr;JNIgC#Swwj6k9p~<9iqOY-NLD==>oB5K#GVS;ic38LRFVA*-a}vE}T&NTSyI3o+ zTbfR<@-7S}FM1nauAf|ej`JPg506H2Gm*?K8E-LbM}6HDhhm(u)BW*fsUo6ou8GZg z^|(9zHA8aigvP$&8|&+6&41`Osy21TvpVkXg5xtH+U)0AsN+lZn)RJsW9L^lnOB_0 zv(`pWNK8ginqAvXcTSaw5KT`h80J)xX4p%DOSfNVWAfTK6V#Wgmb=iK7u+Jby()Yn z-QhsBVV>0~=Arf-8&LwXb8bzH71@B4BzIjD#;DcUMfZ$DHrM>_wtvK=xx6(I2&b$; zs5}or`IB zOY%NGW8nMOXH%6VXu>q}aU+h%Xr;r7i{M+-oH}Dp*7eWBy)dKd`ew8xI&MGaq6aht ziusYhY|Qi+i_GH4P>a=W5v5PLuv#T?j<9NF@z|)e2R<1Pv$1jAl4UUWV9mRbsQ8YH z3?#5SFDIR`h<{+yu7%39Kl}M1Q4HRna0u^6C#d}}g#4fnmw0@u8p?ynFr-F;Rv!<=0=VozZuiwHrR5CL?cP1d4EERwqZ~}DPG8$e%+b;xhH#~ z1Xq9YC`;C7L`{bO+&EK+DxM~aI~h*x|874&cIMut9j~2N(eZ5PMG$**ZaY@v(vrul ztQj50z9gt|-34HAE4S%8VU%|=;Q8>QVbaJVIMi2@+dyFz%j{JdO3`M zK4dh4dEhWjb)o0`!(+y%eqCN|!R#crqbzifoxpa|b3IK|^?g?`2R~>=daISDg(f9H z&n*W}R`gjVeR*JN{n<-=y?O_a*+Rjb%}mD>$A6E!;ydZ9sa|^)jK~z~`t{Zjm)MYV zjuDqsG6&~}5}aBBF?cZ`Ts&&ZBy@AH1_8-{ytoCdBci@OimNx=zQa9w|5qPtsOMK2 zXf5wh*Fo4|q*rKB{-8uc;M6PieZ23w1j6=6U4y!QH_5k;79`_xC-V!B);Tl>NDXzkzxcD!TTCKS z$7hvz4#U_#91)^x{E}jPPxSIbNJmXWrGM*+)^GFM1dTIw^j;KSWvU3;r5<(@eiVEG zC04LMXYNSO+}V!o#QA!y{a2!5@Xu#|rT{f&mK=Eb)}^-juXq^vi^z)ccBglgvHhCE z4uf{3Yt>$Sc|=chs5Sk<%6rU(vRfeZqay@UKBuLeCXS2*{#tICeKCaau=-@lrGM_M za$P%TB;i#E{uTB$+L1{*_$H%-Zt$qu`_(K7&EWt34J{ za-2|%*_0ylL?nriXP$-}=YXj#{`BGrACF@r$ml#4F#(ZkMd{Cuhj|V@X6>B}^eQZ+ z#7fm(kj_C&A~V)y=`(||IGufM6haVI+Hy_b$d$6xnSfD7s;F=CDq&=%b$|W*Sv({P z_QP*kLV1{7zltLG@Na2_oMTzl>FDLz0ZeclT?M8x4QS0i(7YzkE&ZUwBYBol-lV|a zV0<-5Mj4bn$cd&kg4)O#aTeK$PzWher;d%;bedbdk>sg_ zWre_!H%SOf%+NPZ8{zxV>(AP%2}$&d%c8Z#H=>BxyEM499AfZv$fxC}_AJ7Z_hXTV@e!wSUnzUEW$84cA6F zK;0TE!%9AgSN3sYdsSSJ4X?m17XBh*nd-nR*BAv-_73j54 z*Tjez>vJ!^0g*sHYkw1kdrMJnjA8Xf)s5}C$l#2y+<@ ziP`%h=6c7@*PSJ#><Er{SE}4T34<`3eF{j}`^SD7QgVan(9qMD^X8;&_pzMMzTaAQ(EJZtGgx_&zIse~BY))%IB5rOB%rJ{qmwhcyQu!~ zl=>L88-ugR*m&<0#1eyzZT2o0@txwLm-S_}YhqCh6)KQaK1c8JdN~PndEGtCc+};IaE`R>muKC3p=A_8|Fv*~{JstLSwz*)i z5f^F)Aw4VeM(W(@1>3Ps*j!<3WPyGRz-PRfasbC@NLNasQ?-(AQzb$xRl>dO_r`9v z56gtJ6^S32;^!pDCvM|Y&YP;6;EWQ2_!s{lBSBZnkt~a9RG%3XM2-1qq#?Hs&BL1s1 ztldG;1`)lV5*IAH{p8YeBmk> zo?&hr!#al=yX_S3SLVgmmSD_rUT=rA}cK8+%L!&f8BXnUm{mAImBl`hOGq zo<9-x6s76SQ|P&PAw}H9p(2Le=FbhDd3mp_k^#)#5{d8#0(Cbm9>S5L~i6kHTTEeZIyfkf}`V7$nC?p z#$TTk$*Ms{8%Kk3yWw&Bpk6;4vo>4Gbv##yn>}Fl|I$1 zMK8M=3>`Lwg#;jU3WmpcdR{XQAF8hsiy4Pb&81GBe20wP(5_4mS#1)KO{|U!Dc&u} zWL*r8&Y?|$-f>1A2T7+zY1@7-li$8eb``nd_NnH5Hvft~Gjw1G#NEI$e}9+O?inmL zTviOo{pt+UL(H|Dp~HDajG^B6Nw|VRbE5o**i)I-Mwbq43|Y8voP$B~^$go^OF7I& z7rxQ4{mT_56}0XGbxd-%#{PZp#eZ-{4G&h;#5`7$m$ic-Y z=^c`KXDWjFInJ^Pm07dG>wh6wr=I1MR2WC+N-1cr4BId^Q2bZpWb@|LhKcNMO=)GkEQz1!cq$m2kAe*GogOe zoxCp@;eGFq>-J_y%H-D~^=0;$R+CDqpJg;JGd*3T`IbgFuUnV~Pk&ne5#P@a+#qwJ z&aFMBf*Yx_lxu-@=W60Fqe~c05|x$sLA@@B&2l;Cek2);C;ZJoiiT98l2rHun=?rA zPtj&?nFX`=hbdGz)$mO4ZqF4cbXeaRVl7>D!B6id-Ap$*8+DN0#uzL?tki`eA15cu z%j>bMhWPb69J2xIPk$}P9I`e8rkFi<^9(AH7RXm%Qo8vCsOnx|=nfdG(`0-T32ZR~paR!ab>B(WyAH{p0~ZVf+Wj7TFbZ&wr}l3Q7u(w{&B=JOs?Y+jf2~?|yRI?O$0nvytl$kp-20%H>^x#E9?QXH zO);MYsYRGYp1`@OjL4+WXU@FWTIfH6N2uSl675s`w%Vr{Z5Nednb*F)&&_%3D zy{K#5Gy5cr^nacIn-i$R_9=i({sA%{g2xd*DbRE(T@}H4Imt~+Vw)K`VR$MY)YDm^ zdb;E|>1#TBuzE{sjb|fSUDqmRa!NoGt2IxTAK@1yFU)(jEA=+7<>ZH|$_N_AQtYaF z7jawjjO#Zd`8_mOqR&i5*#ewbK_$}RqB`)iKi!l^o`0HU3Nq|x9G7TUk;w9*3x`)L~Pvmmul$k?_@BwD&rCIc0g}C3+a4aX6LLK42tP<#Z zeV_Iq$5oDN9+vSCS0H?~uZRu^Zft>Tyk>-Ww&SSnlTKk}X2I7zsne5zbH=k7z1mPj z<_YYE{C|OCLzgYf0;FOY_WVfOQLTll^fJ{^fKS2lw&I3^JW3tq`@Uq^ofzWhEm^-# zVvn+bn3nPivCs~?*v9i#>S)HQluNvjzJw`n%9BpkJ+$|OF{E95wWC|1-*`8(h|c{( z;51Z;9s(+Qqq^^i_|r(0B$JBCL0XbuQi+Bz*niYk!xq9!p#w+-S3yX=*|_YuXB>u1 zKYsX|e$+HqbP5Qe*iNcuZ$4HvqBWm)J7dE+qLN)cBG^ePWG0C+A}W;uNqT!}CdZ=) zQH?0FleKH-mO-K#uVd2oSsn1-Fmmaxw01+>LSk)FLE}nt!5>>l1*N~edx1~PwJxsM z-+z$Pgi>thDH*H`;CPhccY&-6#Y07~9+`y^j;zj>S#lhMzuiRWwT*QN$PXm7_Z!i8 zD6UDwa%nJI_Wx+qkfp+Y79RmA&|Ar>MOPfyVlqulmdbx|(D{(Py#;eHE%F)i z1zO(@x%mNMZ!qzRoYCHSJ{A}9241n%Rez&UTsu0+^&`;7Y-g!DHxQNU&DMghmCRst zk{I(osWjD(R=B_xcdF)|?!-6Plgp{lz~t=gR_%y!23r)sPmmSOIX9ZlgBd*5i^fnNs)WBJ5toq^pwFdUZ=nqy6;bDWPVB_m~GG3Zg~%Z0jP1FoG>Sn>(_2Y+D5 z{jIs>vX_elajq9O3x81ZEHo9IyA@zF7LD>umPRz!~;)7xq z-zev$@Ykj4=_bN$Cw?EtG$gf13;O&}(Q`bO!uc2a=;yZ)>Sj}q^~?&3p%=qaseZ~1 z9~Eg!AFt;MS?O7+%94oHw#LN}I)8ji$Jv;n=z{Tk$jK0eVuC~TOC*&^Hxx8kY80gR z-WCU$&uFae?U5lxYGLJaXG>-bU_H2HD_A%ZQ`jYt z`6f2Fee%u0AtZQ3tX$>&^uD00=hj}<4ZqctGA<(hvUu6QzA?A4$$tTOL*^_fW;n4N zdRBa+$6wXoec_HptGYcs5PuV|E+ewgrT-9OBLbq4sPA*nASAhQh_Qe{&fxF%r~i)z~~sJih;4Z*?8hiL?#l?t7U+>Lma4N?Q;=Q0s`jELybqBCc;?43hNd z;tw0#KXWysptn=W+_yHdNJH5S8~>g%6^)I7I>7s@!}^5N^L9dK%YO#BA)jblzAHbTxbN9Dnf{1=@woA%lLS(_-wk>l&3Q(u5ZJ88LNg%G768f2v9mX<5EkJ_eY zTvM$kp-IELX8&vTm31x6qP*}#WOT)e47K;T>vD_RVyyrF`l{qsn{ib2AJ5 zM~ycviZNp}SthByk3{-Hw8Zs9d$49QyYxr!?@&g4FhE?KHn**~R0eORs1hm)eoVTq zomr-keY=rnwzs4a%d6~kp6=$yz7qzl>*|fg>c+Tpn9s4V>H36C7+@IVlpu%+4FkF2Q1Rtw2UOwTO zCc9Hq8yfr2;D3nE)F)c~|FI&nWeonXuKh2lz_A4e#S|uveXYGccGH(=^ z4w&=oWY5Ih7}%NV@%+~bg`7sYu^ z%%$uZXT*ItG8lPRCONpffmnMJfFA+1#tfg3@Cl33hW(b)i9?kXV=olOk2Bw1_GjHy z=(@-+OMe^eq;aF;a`@f{tFPgh)%dGqYEaCiK2TmC$P)^mi&J*w_<{>9+nbOx<#fMa z!Lo~YYyOMm{j>Z8p; zYDg2WZWU@LlCbnC!p!+#p4V9bnD$R+m4lWR*P(;WZpdEJ+WsdMVAW z@XerGx$j9%Zog`THL>x4ZVrKAZRikelbcl&Qf`#YFrIHG%yV#0C)V4KO>(bPlxypzDn0Ffr0DHd#X=1ZQkB7EHk#blQnfu!q{&=1yR{IKukj3H zT1JF+CBDbpXdmHPnPa%!n`Y#o(jeqsL2Nxu)qu{@maw!${1awr9Q48R%@pp3LL0u~Xtx#F+96JjZund5duanX5qil%b)1hH4 zD>AyLQk8N7F;5|J4%D7K*QPqpUcMMAq~5w^0L9JxN$71oe``FNv}$=y$PHF@5ZMo& zUY`A0xYMG0mfYhS;YU%-?4c)2x&MPQz{RxLjJtB^LU+UH?u@OhM!Ub&{3WHV`%;=< z+N+T9_$q1q@y$&;oBoCZ=p4hog8J%-ZJG53Cv%i`}}00KXeuw=WGv~~v&>Cw}*sNb?UNH+NY@x{j2yeZiWHZWn%!RGxM z1;5pG=TP&7k<(I^x_60@Da>F+NhthkR$4!yTXqg1{G~N0tCi*(S(Mdk>So_x#_N)hp;p|sx}~ZC{0p*Vy)`s)BSV# zT1L5`~}^rkLX^M${;m#_}kPM@#&`T zrnml_XRQ^x<1g>G#=h8ui~uK2{Y*8EYtiND_rqtzY8h(m_ZM6L2Ca2+*6+WWxE|bf zAv1%!Fji%IdZK6iDcr5kJv{jAh(UAfm@jZ~^6Al;?WdK$@qRusiY4YR>WR-vNoq8% zWD`1o1Pti$;Gcz`XNKNJXi(Hqwjla9ZX)M$w_>&(i$ANz!Qx0m21zN&%6q43PRo2{ z9e(oNwVKrjD>q9y-}QDzEAVIkp!2$3_S@=*Yv`JQSoF#*p?i}c&Tqq%N?khO&cZ}G zj>CV**B#%BH=`n=;+I>;3)uz*{1pfE!nSA*R_Ne+gqx5Xndgsre-?6D{O1bMaZG{< z%9l49obAv7&d?3_`08NcNoxpNWE%A3eww?mfb8e>uKh?by>ppRT8f>c*B7uUzQu_L zt?FgKNVcHf@Q1azXL(%u9jUbinWdqb(v^=R7=_fwn5B5xJG!lLj|502%cH6MIW{_q zlbO&$t@}!XYlk@TZ)LBE970i_)w9}CYqZ1JJz=A*CxQtH6N76P;36ZscBT76U&Gn2 z%7g~WRNT9lsmF&g@+lTiBGY{HezvDxaLq&MbOiANmD>eXW!I7AFz@lxIEHV*t^={g z$HA&{A>*hIBWvH(hT~uCCaF#wZYu($M_!>~C^D60g(9|%o$}U}vhP+(#~Jg>>8tmn zbZVN|$$c#kzx&Vz22A+lx+hgh+`azNOq%k3V%B2C<(Q-Nqii@ z+MoV~%yy0|`xW3T<%DN)FWkn8w>0{_UH$CsXK?Dv=>cvU6UuskB}im+^o6`omg5%s zBa=~hH#93_nBPb=#UJJmdK!M8O+PR_$t4iieTnP@Eiu_xPtTa#DA&}u%X>v`E{(pi z>cXou%s|i*qvW`GFANtkDu^WXAvT3Jtq7ZKhj+sdrD>8m$E>7>JUbpt*|}cd%$YiQ z6t;w!eRGhG=^aSH{&vnG}>)7r% zIv^|L#3%wPs_-GbWmtH!XB{EF5+YTy74jyPtLMkW+AD5oGr zyGasf8s{5BS-1M}w>ddZ$g@&ur!@FI0s%T-sWgeDlS0+}OO?&K)bIGtc(&HzyO1 zn?iw>aQ1rI>pXXG?8lHlLE?+B;ecnNDHrtLQwz0TeqJB%uMxXc__nrP_>T}=i1)f^ z+0_yJ$7B7wV{-wdv$&PA`YI&qb|qf*jAHLCxd5x$-&itKHktT;^BHodDzDEB<~!|~ z2~~JT(ACe3B2!ry=OE~`s@~L<-FmD=Q5+~YcMOQfQX41}9oWo+bEi6PJKV`&g$K1P z)r0(CMasW*&er?A3P3PfavewLm+G|@lXKibj;anRu3O!sE#O6(nwk zLhS*SlT+HlY~0@nm8@}y zq6aO~Z$a5F-=IZDMb8@5t5chnRfp6B8Uiu)2`?N|aq86_rx}tPLh%m~W_^Vbd_|F- zRWpG_6yti?QIOmEJMxp#*#1H#d_k#g|Ac2t>Ugbbgmm*f-gou0gP)cIclEDSdvVr( zQ;vnl%DI2&F8P@wfnB|KthZmQlHsx*BTFEwe7%%y%c@enZW9%YmO@lq7m8VyUP`O> z`moFq{%Zu$sJQJ~v(@lV>p9WF{i7pV>UFXS;$c+hI=tEYmvy+K+)ZrtrUmTSUj!s8 z_55y*UEkq?5;oJm1=cgb5Io`V5DXk;g!QJv;fOv^kOKCh z4IWG62`rLC0NCjwkPvn>0jzIM83RfHV6>}n3T|HmV1gU}mnxk3kFwu}Q;&1NzW`X?E>N#o zVF|bjfGz9;37Q30fdC*3;}{NAH-I!in8X=;EzL1dw7F{=xC?-JUjhkWaH_7^W)J8H zfK}fB2b(hw{)0Pra4K*cD4zNk_@#OJ_&;CE6FigF8ITbO`vzCNYL2-C(g9)SK*awY z+4T3noDdX5eAw6%u&ufF9*7D=;D^Qi1CBL^J^yD2G{cQKAcEk3PPhyXA|e_P0n#jl zf|vkA5Q2@OBL=g8c;MpS>^!{8JUq;-=-jGKmNI7URx~U!!hAe@0zAAte7ye?0`tH? zj1%~OwZpZ&ovmoN)y(a*+#S%l-_r;}(7EMoUESPi1bO)X@5C|=&as@OfG9=PwsriwG*w(##Iy^lE|&AKwKqcE>oy>5(T{) ziS3BXKpz!==^MDD8FG>fr(T|O4Kf2d3b_+XiLMueOHHUe9x{f~DXN4d5-J{#E{_== zxWP1sHN5vLdxA3slmpC%Lm0`3twT|3fwZ-wi>0$G0a3uU9!Ll9irx|Erfx*$EEsFAeEh_*P(kKjt9|x0qbCjd(+B-?sga*m3dv^eQy7`- z^0}Pbq-}94{E@gmFa)P9)6Cvyo&{&D$p#5J{#$+Q{GRIzX!=0gG_s}cAN53+c8TJj zLNsVf&X~wXEN^1oBym`@+dw7|KAeZYp>5-6tO>Y1Ppwr!!G7zr$Y043_{H!n&%&O> zsec*PC?Vm+n7S$XTAdx2-d>S*UNL2Q# zU{PZ(7a_lHgsk8#xGllvO`HmAcoBd;cUeL{3VE6! z8!1V-)KqnkGmoE(!**&g_exGAvj^VbGMIzxKw(5ND zL1~P_g^eVVvd=M>A?9eLIE9i&sHZ#=iicWz7Ep&n3AP;hn!AFLMZQbw$S)?O;l|`x`yIs^9G`PG>`7huclAIcVkUZ7)R)jJdD8c@1Lxo<0Z%F;C*$ zaf$oCPWCQuGj@RE^Id$}RV+zryWc&f`z;3nPq00`-owy2QOE_C4U9j{0u23Su%R;# zE~%RvglJ%AT)!G%cnYo%>x@f4r(h@Lr~8Y%VJ7MxU3yo&iTJNUf$i=t34|lmyLJi2 zpFCy7yVGCNV(Xn`>pum#Ef|%1yA9h>VfDyAJ)E|=eBgi1dGTO()RF!-g8r^P!eDu_ z<-=IHPMRJ#TU`Gc#@Hk98{rn0YL75$1ej; z8!l_X^5Z;XaWI07B+;R2Kvrz^5m^tX{boJVQJtYGlWoFe(fmzYKgK<_tUzaLdS%t% za{ZQ+yinSY-f}|K33=$tUmBQbH{_)S`rBv*+YA03Yrj%bU1ggk$d{dp%|J1IEv>k# zw}R(Ctd=~zUW{M%+N^_TNjS%w$%}YCve*7usQr)an;v3F9w9g&bc%AFVW}BjR=!6u|8Ehjstf!C^PY^_` z5dW`grgoq4jtZn$O$@!TQL?ra7zc=$<;QtA@=;f(S}I0SgJ@6<*$l=qoo<6US zfSs-1<}8a{%Fxo-uLNSy)tOD}j7SIqOZ#%8iQL4C zfa{q%fP!=OP*o;iw3pV%-KYbuQGaRGKEH5v^tbqBR7>q@%b*1GC6>QCNz8+!`XwFv z5%hza*>ZW#w%s=bmW>k^yn{)ZeTi}IIz({fNe5mS!8!`LjM$ev2h4AK8HSON5t|p4 zUg(hbtP(@1H_lIU`?8VGuMF#Us;@};qwyOThy})nI=P3pKN?SY)TX_(w30o|Y4A%G zT~uBTav4={ALT_u0F?M|-q^C45UB^(NfLH=1Xuai(L#kPMl8F`zBM?-l&6l}>=L^TBY`CL z*?;ff^h13P4W3ssMdtU*#fPL<49bdA?-ZJd+ZyXGSK?j0uJ#MUUNbLk4>~Ds#rC1m zxfkVbuLQs*Zz~E zQ>@SwI&O3*YW_ttky>wb7xyC-nR$};B?i!xrOSu3UC?<=hxMs{V{c=-7dpXpI~m4D zGSy7K{SDrafj5+&Wqh=txLGMg@yti}-dKO&hBE%ThzZzAB2!s~zB%xor#GN&>_YKw zH6`r#E3pkrBE?>`RS-LU&1^%3^i9n0&@;5C#o)J7WZ#r${oU-dk4JFe*lnP`=dpum z+qdvY)c8Gn(L9v6bt<)|t9Gnmk2kf*(ztZ2Z4qnqZ~2|R83ckIfSO#$Axd)umjX2J z58-R?IvpgQslwa3OD(z= z5Pm5V9=$l65&5(Vm%YV43t@3ihY%Fcjg>-Q%-e{DrH)$r{%!JY8=~F>BZ!YLWZbt= zAT#!zvM}P%mu*oxc|q>>6=&fM4zdS%d1s%@2VB-R|H?UJcax}CR86ss=LmxJHZNO* zx|{7wuFoiMePyD~j5Qi~FF6&=ji4%V!!ucej{*g;CL*&J1qT8KIUriP9>A?bjHc-ISK3D@fybyb@`&#dbz->|UQw}q1a7_o4$ z!dcHNG5{a`;a$%g3YQ({@$3Y>WaNdL8H2{=kq_vIcFe!Zs?;nUOhP-D((dq2e!9&D z*DHB{0af%^(SJr;oZV9?5z_ZEi+!nK|c%rTm-WN-fGKh`;h2$hcL;u9tL1o@&J}p23 zn~-BMyT2$*G}Ni$SJNj6Im!}1oQOJ-v1`Lv)uj$z;eoM4jWM_+xYTFY)-h_}i$gtz zPHNjS(#>HRMzyrE%f@rvEO*VjlNsI_R9RnlVwYzMCg=5fbW#Ipnn3_hwuPZGF^sR5~y|s8u&Kqtv;tJ93qV1HS{ki{!8pQQJpmehM zd-r*FF81DoAa)#yccY*E+5E&Ni+ri1>t2Nh{voW12M?iJIa<28yIPq!{D+*(?a=u^ zJg^f|L|Q0_*9e_k%htz=h7ZJx&i#?bfR_eD^Pf}G$;q9DkMF-~fF?S(qNBAF+!Fdf zmJE%7sE{NtpMW3;3<3+uNb*Ta2}*+{d8Guwa?B!T0f||N^^vR zN@wF6MYGZnB_PR}O!JwRPDW4N5>fIkBC?cugN@n#Q_I7}PV1fc{@S&93~zK0Zxc20 z76A$GLxA+kmP@z-00FEaqJT~d7@uoXAc`_YX#_$GSO}y=8ealml}q(a{zQKa=CJ z87W2nAkNBO4Zx?=fw?l|!<0OyvR$AYM6&W*1KC24z74)bV%y2Fmz5Y=W|bGlXQY+( zaS5naGg?|$ey2rZY%is1)>)3@B+=9a=Apohac)py_8#G=L~789fX$wjY8y z;I*uZF#5n9%iVWLuy}M1%g9`R@Gl1Tx7loQG%@ow`I}xBl8{+vWLIaRiC*vFexw#u zX=k*sZ9c;wKnzbtf`VTxF9phyOCaUYf-H2v@FfqYBFz^+BWggDdWL`y^e(4Vmw~^s zRHi^IpOr~-*fuI!lwv;lZF*N>srK&T7gZ~~0dZR;r74Ox@gM{d8DmX&eDkZHq@_ulwgMa<~B zgY>$?_w<2h@8N#q+I#StfBRwK;Ni#hbIb9A&{?|C#TdVL0I?_rjwp1~=T+>MW8(&c z{MIKAOSs?%UZ;jn=*`3d<2Gswm1$CzaiVzSfbqT4@uxAUU`eza43`p-3PXrbkPn@a KQC3Y3{eJ;i6OQEo delta 39885 zcmV)EK)}DVz7V>)5D_I%L`E$!E;R}z(A34)3O6>f5l;rxnI_Vrug2Vj`$1 zgcK7-3nJv?+48WbW-5x4NKKOeB|uWh}m5u(KJZgiQam z+?4Y(PN&yrGp_XX>2`IqUv4+Mhi5Zk?DWg!^=|KeQq%9Q&&%sh!=HR9_(T_06YAO{ zlNt0^S{)kt#+8R6GAW`8B@`6&1%4o$g)%a&#uOID5zG7~R+1Kwg_d|=+ z`=Isod3=E;FECXIRaf~CsZtc0h^oNRj{g_ZYf1{kXx8m~Vwzc>;PgOV$<&YMF)k4e#8>avZv6H8+7cOfVP^rLkfX3Ne#ZCJREKuB6mQ zSd;LHS0kF=BK1&SFfFShpCNyB09hoh2^S|Prv?=qh%0h(e13HmITNTdUtB(H6Es~W zloeE~yaHNeZ%n?QNnrV}x9b9!TS&+3XLRcM9qG2#1s65PT*RU4gwCQc+CY zjP;~F(}jj5*_651o-s4M#wHk+4i~0svVUrUSU}KYQ=60;XKH6mo6vt?TLh3~6~J1w z1!X+v(?4(bCCCveru)nJ9$8&n7mU}9J&h$uCKO~-;Bvl0Ryh^GYE_Z*<@yIA3DOoY zi6FY&7R}`gWsQ)M6b5glrvdz-Nbg|o46WJa<1p6U77;X57DAgAW5KL~fYv(5{DLUY zSd{3Dv0Cy-g1|}&DP(^jB%MC!I>EXQE!%U$UEJpB3nd>5Wb$GJ{6Azcx`xSVDL zZMHdl!Oj?w1!vN47%*$o*&{71I*tnc7^+CXk`qlCTA#_D++LjS2Q%!_(R5BTaw3Xn%2xg0=|7ggq*@ zVTfAt6Bs}=Er${!Vcz!>FXn(7CogvHDFGH!%0kE1;j5M)sD(9?Rs3!W zCKU)i2BOvgS~PzI7J+~lsu$}Ai^&5fXkjd~&BK*@2y6^sEP0m+T}Z`X08RbPqpAzO z!s=<&+$w!ob*gE?^||ha`vR3zuez`9_4tze>We4etD^AM<>bM|_Rb~7#{^Ir3YPneMgKG6PV9o7%`=Z>G+Z%^zcR{a8 zx3W$rQW=o90KIt9jCB?UJ8MS!WGI1*hY=&thYP^qwxLf3dSW49AprUnz(??k0tCzx z;6)Gs1^a)St;@VdDgjka=?uMfL5~8(NA+Nyt21V&*UR;CzkC%@>-GZELgAySE14s$ zz{X%r0}3%kmNt9!1v(Zh^j!#&14>7b6i^bhDGKO0DUzTfFN=ph|^k;aHLP{Zw9{y}a-y^V}hn&eRu2sACu%nHGwYfEaUx zeRF>$2c0^m)Ln*kaQ>?v57>s2%?{ay>peB>!tmc_l9da9ewHBmuH`p^ewbrk8GirP zXu`|62Mth#-<(`k(?_6%?dO}lx88#G^X$y<>2(PuH!m>m;h=eU^_H{`pzk#+yfV4u zmC(X6-KwLl*J?V3s1e;Qy`{0!W-;6@%hi8*&`GZ$J3(>fKXyn{6<5axdt zaO@Z)lBAHKs$Nx!Y3)zRe#NR(4k8r^M`lceoYrq@Q560>@ZM1*Lr^53U?OT2i+OV( zkOFq{$&3`j#Gn3!@3zVVX%5RdJ5Xy4F0lZQz2zPPbMFO~m3IPtt+{dtE`;mH&%WCCQSSfjkmWUJ)72LOGeQ&BsvUwo;TC;yiwR96V zcz*(<{Si?1t>HK4;9;Tn38OL1-SNAzs^YX(Rh?ZfC_gm_M^qmWU_fPREv$mbm*1BA z%Pq)OGd+(7R#+n~IN>xLQp$#8)@vZilE5GXP)G>$}PM^P=q4_V9ndK{N~dO&z!zz~AfZy9N~;dGsA;uZZu+nVKva_O z9TjIY$x-HlMQ@};xGSws@^oKWpgd|DqsNhs>ERt~15L)zlW?e(B#toXfx2m&*%sSf zU;luuDIbq;Gpa$P3uk}hm41^t#FX|FVEOjO0F%!t{cZB!bn+u|o@3GkUV?4AN1BM- z?++@PWhIX@%iEI_4v04zcAwxhJwxrbr&?n@zJvBLDEkj*&^{(*gm`;KE}^iQb7$>? znY88FHG)VJcbyoNONG`SGMCqz1 zQ!4Msm%2m$1*y;3$K|MW5^sx6Y!o`pC}+S@BI0uM8%qt6aq4X&3aHO=bzkEc!q4yJ z^6`ef{#gK3UkQ58o5WLeu~1^)Ibr&DC&s*?d*t0oFn3g$1N|eSL=K^j{NO~%>2T@o zDP+{01>5@?#|VF-WF(&W^@);qNSJ#TC76YlYro!3Fwhb--gd|Vhw}=cz<*M5AiSy1 zIe;t0pkt2iX$E p07zMXjnZXt@ps{~r&WW=y`HDN3i`TwpRt73pCWu0VY~J^a zqAK(Aa(@|my}nuPm(f`SMsthV#9=P#F1|!hO;l60i{qnmx^|8xH)nLZnuQZ!Sj2_# zzRk%Qk!$)koZr0g2M+%5Cic!B_Mj$u)_8~yL)$M=!vTeA?olz(eU%h-KyMm%PJ!pW zLj!Z6fpvd)A0HTZUU@PG$DT)9Hx1Jg*jg=?eysf?daNx7Lf97Zjf;p(TKj0AcWl;|;2oQ?%#TP=qU#Xvo_1%Q2JURmIdCM@ za-(@u8j2PT->}O)gtmnSMj1kA)*PVv?eAfbun&Lnz)QpHriad4n^LWrJB8>ySpdYK zEC6EEZj)1Z#boE?qzQ!V4PMp#!K>|XbVgJmw2CV|N{7E+me(cXhQ>hr(e_YVF)c2l z2MeX)heBy$YKn*5Kc@PvYE2}qF?ZG!A|i;&)`d`cz_><2Lb8r$DKq-w$vtqaTEa4O zz^8v^yLyC2>1&%n3=1M2M0bcFUsMk2XeboS4{7I#$ea}&z1bB9 zQ+rTFyxY}`IS))#Z+!)go8Q-U7~n4Keqa1_@x#X&*yRTlqTr&fd*pwBs{wWoF~pjE%Q1XJ)Z73R(6#3fa~{j` z4IwqRwBRb@uRoL*!##tbdD|R$Jh}{MWWLy!*UR00xd=1!*rSNm?Pj}P&R3{ICcxF^ zq`C(aYdbzDKIUZ_{Lp;)C+G>QKaye~lX)Uo9KVG%9(W%S_AE_w@fo(eIuUIo6tsWF zo;>WFF{yV1J0V)gYeFcB);!yxmPp5gv_)c=?!fKJ1p(&knWe4?PsUp@$d8tdXx#eZc8-Nvfxp zXe~~IOcO%&8w8U=32WHU6JEtNTj$Pht;*J08}K_!(iFl@&z%CPvyNfi&&;+<)UKOM z8WTs;qO4#_2rwkV0kD>3EtClAxu#R8HK4VZxc{3tsghUdggFy$YBXG;{91nrzF6qR zu}p71e-8z~m}$_j@F;M96wu9PbVtM-!~`stR~TYu-oF_`%p}9H&Z?3WntM}0#Hsts z7_0JaV^CU_y94nn#zi*MuDonPaN+Z}jZcZB!HgKf`}cQ1UInEk$TO**2 zGkyBDhMPq-D3J1GH1HCY(H4J3oD@2qOQ|uuwv<}l;GCnD2B<`y&7?wCsxz`R-iO0d z3AIxjWg7G{cSZNGKm#oJ7_%~Rn21!2D)jWvM;g4{8PMGsXm27~oQNayNoZvo6iT!y zxQ~dch&Ezsy)SrXBlaQLQBiwQ?sL+Y^VRIte0Ad^6yW(TT17vO#jby@R=1cfQ%Vru zDwo8EH*Ya?^Va$HlyBbJN6XfQUiTabh|Iurd=U-px;tK?eaB1A5It*|91k2_QGgG+ zGxt4pi`1WE_?g}kH^AAucw!#uU+>XcTb_deE|iqx#lpLKiIc!F@Yx*%Fiv5CR*}z? zfPip-w0g6CkVZb&53_&B=lW?A(3~{TL_=4d_zU<$p}0kzA9A}>O{n=u03&RAbh)SBw`SDm1d+*h7t$l zIgw%%;!x!hGutKq_L(=xyk&@9oA-YYL3DGvzH)KBU1LeP zY{3+5nIl_i0i=+p7}5WMR06BVoMc4b75f6uA*MBAyUR#a&k3Ws3Y#5Y00&T)TB$B{ zBpoiI!=+ir2lwSAGIZ`uL`k8eso#D<+Ty-HCy#rqW1Hv8GdkU0hcCByJdZO`INxfQ zmcZsI8CstFa{Pa&&&*_&*$JsvfgDPg`2l!lD0lEsIRi#xr~W4v{7$@S$%idh!N`N{ z;_d7WF8s;;srvOx57rf!tvb_aVBR^NN$hk7aWhOQFquwp*r1o|1iAJkyk}L4&b^Zi z0?V~GEF4H5>^bX1?~Ip7J)q3AATvR=*2K4QnY<8kmQ&H9lyz+6^Z*o*Wi+VkBPO3QZv^giZ;S9rmzkc?=Pj222~ zui<36b+X!fPia2g&DZhQ-Qu!bmoXdtjR!_C34gS7KCjZdi|MO!u@4SYZ9`|4JKqAr z5aMvIcLaZ9CO8hkmrsukldQbZo0ySJ#1>VZO-vhT`ku%QPP=H}jV02je3vNT#J(x82q>wsu7#Rcv zmzza;6GULs+ugog{|>v-LD@n#R|}k%`#u^zU%wT*XTpAVGcv#kV`+QSnN$YVm8E*WCY4$lB z-6cXiIAWie`=x9Bms%CTH=zB)cKBu)UP!Zc{<;AUDX-Vdjklo^-tRk_+j9vFC3W=! zs!o4D-#CaVr)8ZshG`XCdt3KZ%&4#h^^RKo_s_I9QkF9In`H62pCq>n>?GOA={zw1 z96f3^swdj{zQSl^p?TKiXU9W(`eI^|l-(EjiE5RkIJR|#PM%9VG*ZkGzsm$ZLCx`I zQ2w1eMN#$g%R)Tt^fo+QZZHFj^-1vFi7jl<^+(Q0&Lt6asa&!9k2-(( znhWbJ)jUYc%NX!zSBGs^h zH5a9_!PmsROT=Uc!WK0UF{u#|lNi!;jhNJ7#AN<6Ak)Chl25i@0ByWceFW#lXuc4F z`LL?tzKdNWj%f@JpF0n)V59}<)C9@G#KE6iG+8YHWt&DPv)B>TF%sB^$zy-!hI>XX zN8(f-uAI%?#hg+fe0mj5$ac$k zV-i&L_gGZx;$RPo`aI;=?JK+D(rZVYIa|3Da!%bolOBHHG^+XJWwQa)O} zp@-*pG|RhCGs{Lb%ezoBOGit*{^)YPc~OS(`pc@6n*PllHOB32{=9#hiQ}2r(ap^Q zfMO#EhH>wpsvN_w%d6FVQO20u=Y6S30DS3Y2fjpmkUFs+Uz@l1)oFs=#kMepynTVz zLCHz+v4cj{J3mQeR`jcfwYb5ZPjr(V>k_HV!cw6(5YzHnLx*t@Gdbeqbd&vPOxQ&t@ z>NXcX+SxR5i^tEZ*FGrhHh4;`%K3TR3bvI$MR{?vO7A(^#+~QdMT_OO+{7iKlG}{K zR%=GQ&zlljFr!T4W-S0PY0DBfYvt4gsuDlz>PhZsT|I4iT33IMQ&;P{k>pwI$Oq|v z4?3__ymfy!{`7tIzppy`VK7EY+f(kOv+in1^(JoS(m3_m9ab|{NU3oj{Hjz{D8S6} zD#VP=_s&t)Bg-1zXa{d-3@Y{TW_Qd{s@({FeNQvw!PnBkE^e3^g-T3V?@EPU+EWjJ zNPnSBOvB~2zB7NOJrehM)UXIPcvZIcy~8<;_@SIez*Ski_;I6s-yO4he6%$}#?g0r zvks^>w4h4mzAjIZVTa}mX*7yGO=Xm+K+O8 z2ed6FK{Or84M~j;g6_Y&r>;pbpDF5%Zyi30ROzwXi(r2M)Sbvxz z!)=4vWn}^0>io=tDdC)@S(bpeWt}Hs`BjB*UsKj(jQVVjI>2hqPC@s#sEUx^rgs#x zpQC-{y3>D39$l5FJ&SoX`8@YlnaY#e3Am^LoG-7-#eNkJQk-qoR<_lw^OhDho31v< z5n1N$^AbB_D!A;VqifN}n)@QM?5pG@T1mnXM}3<(z}=KlYG0%{kXYQpQ}Q$tV6NsDZ7u4tcAjfpC#69nT z?uGbapRRkU(QU#XzV5{shPTjRCW0N*TEbIFql>8^UC5yfnW2Th~Pd( zqeB>tpU7xq9AL~}`gI@3zHP zJzsCJou}U_5mw2p%$ShSTv69weHp=mKC?U%n$1+kbL~rQTRndIt;}a8b0%j+N1>CM zbZWNX2AlFfdwpiz{ARU;UcQAsDOG=U@r*&03pU^T)};ul(lBCOb?>q)z=8rM46~YRcHKOgT#u76J;GVwO~9l%Da-G7(Ht(vpG2 zXD}&Esn3YEV8ShDX=7mt-&k4TIZ=hoc(bT4I%+VZYZx`)4bhCra-pLEKZAdT<}#me z@DF3iX%acM(yRzq#JWc-!u*b`&!X{L)2PDkR{cKPI0T4m<}=P+;5L6sVQT^{fscDGABh~=rFDoTzVbip=*D|bD& zK?zs~)l87eiE}G5Yw8vJK-PbuoeU~rWhLQw5O12}w>#r@enVjd9Csu7I&3q;Oma-4 zDpUrjRu%YDSwKczahyJ;5mu=NE-Ez3XBxJRu+@MR%#CI$I;T-n7778{HibT;+TvL= zr9 zU>vwl1hff=E`#Hi?pfFYv!D!~Z;(P?;)nJhruum1AATSv4FrZ2acf(0?@BJh=7Rm( zc?hssY@XVm9Hg9N(;ul~>Yr2d4%Ps`vY7&j3gj%4 zxh=U|#!5E#{oU2=`q$-|VDp>x@^+PSIzpBV$vLSM%vUYvV8?3^yC=yxsbHjeIjvu> zF8f8Ci_cpiJQR&}V9i9kD&GX3&FkCA^5dJ_4dgU#E|t6|G) znC}IHff!Z_%Pq2LIp5vBTiy6Se>>xDzB?27{N`d$kzxh>M5{htEi)%g8xNye1aNPW zoS38%qfLT`PStqmLe>jFX6w`S70Fqxth@Z-8C3^NZler*MNmszxw=CX(TBgBO_}p3 z-m8N`8n&5j#+`rj&WiF#rE1QKiR8XyfEB1t!J(?uDSu`PLbeb>%)eh=qpBz5+&^9U z$LEb&cnoIb{yjQhoWC1kQRx!GeQI6q;tBiG>F8QqIV_{3Q>5$zeS8qCU^59xx#Byim97AwAd- zJ$O&_KmdO=RIMJcb`PL##|9_99?X*HC0gt(l4)M?k@d6pL`4=9G&ti;u@7WrxQbC_ zWS^MkhgbEUm(c#pLT!I^-8PRf>r0_B#U4sGA>w!6)Gd9|lFGN6O5Mcnr^ zm>Km@n(mi0V6mq2AAxksE}2&gUe;9wa13#_kfeX90>=eh9L^0d5C26uQ5xBEK@f5K zGJuQ)ETGe|>K!WRi?SHtfwi%bMaFA~_J05-r33x4P?W2`bf|Mi0|N-KDfUJq@{1Zw zaWx>949NNcnRvDGbU;uHR8Gssx(#^F3faGKfJNo6zHQ`^7gVbc%gy!GiZu1RELUP$ zt)_ppQ{N+vn3rFECu%NSI-C+*#RtZM;Up&@j640hSGmF!WdliS~5ImH1u(a%B{08q9rK7tct8| z>k)4B`FfUxRYUdF;75UbMd?wNEA0Ba8NS3$YnrkU~=?=1*JZR zHldrfFI*&cPhlQ}M^IHs!@{ccsH%P^M;W-lJ|}feRIICU-S-QA(l0Bl9npDOw*jqI}0CR-rsZ?gs7 zj)?jK)!Fda)Hn^vqd|``F%I^7S>Oh>e$F z9u42pwI&tIF_~E{4)LH-v0#6=z=uI1SN9(C@mRYmaxiA(EYn6D8sMus1APBV;AqQb z&xyzYP#-X`VoYpq+E(5bnwy<1KyxgC4(7tz`4@gdZr`o<{;%qD=|6w=cNhtMbH?VE z%kz~FlMX_+!=9*6{*4;9IK{NUw9B9e6Cx%<&nr9KwD31HEv(LOYnB1~{^ix~_N)#m zkI7M2tt_0i_9SO5S1jYkO{%4EB{Qz=6wZyl35z_o z$7UpBiN{tKDV$tkst83#G*AaqRs+g;m=aP5)TaoEi=`HC=Mix>QjFpi)tdWC?B0HPTARU`^A!8eKlxA zP^ZyX-a}szu`wR2KyIGIWsgGcHbyE{r2awdvtz9g_5_gZQoK`|HG#U@?Rt4IVb`l* z;Nlr2;<)CIu3*^16b%0H6%5_Yrw`_Z3^!=W0wE}sDu*#fLBWRcA0Vnk%W`3&>z}P!0{B(b^4i8~j=i5$PFPO!F-gy$Sc)0P34wK~v1<7t` z^Oa(9v;?`NV?d2PJeNxkPIleWv{0SF!zPQkzta0Bt6Q3PKkZky``N8DI>BRgaN+WOjtIF*H0OZ+3=LG0JkUm{QkJR+g_|L$P+E#Z|&VJRjPluVHz|2 zON=_M0hXnH@~+`v6p>jOeMX8;5Zu;Q)nI;X6sYGDQ;Z8L#%p zH&x!JA}59qkiZo5Ud>pQ8R>s7*86h`U0@wp4W?g{>4^fgeNMjm!?oV2COcnw_knzU zA8WETP7_)}za`M|ICtKABK5q=7(f@^ZB^}k4QjIG>Aoi3iU_jDInh009bPwYe11Kd zqdGHUQNci_mB-2eKj6oV2WYM`(Rlvg6I0z#ESEzum1sB74))bm6rz93-SCqqeBl{5 zl=fCqPFk2B$ETEX63&R5AhP9Zw;v(o*rzJw&V&9(;thC(VSL)ilGvt@M3$UvBUNK; zq-xM%LDtr7O+F-_!X)uOyIw`)-i9<%@g^^lLS0Pb}=?DbMSZ! zI2ED=sx)p=h?XqVe2VD9&Gqv9mcT3tNGUrn~S&_CWi_DCl_%-MrqHR(P^ho(InF*@9<{ve%-6gj?#R7{E#h1Z#% zj1+&VwX09bYH?8VqMeU)Uu`K)hmC&xK)4~*o(1<8xFF+%8SpFd2p92^IAMIDkntSA zHdDiB>VqBx%*%gNd6w_V>Bw_8kd}2g#}(dTWeL`%lnC%)5tMrGr5c?KB)IrBj<2oB ztRv{0jyU(|OXB11{wE1olbqu3ha9J2NHeqKHsh+e(?2#Z%@oG-E&Xb142!OJ5_Fj+ zz6v*IR8a827JnRJpEAYl;ssP!xzdMUinx$Q%wN1)Zr^`;FA(N++?FYB&++077Dg(1 zkx{wBg(&XcaG5(P_|!W&x>8NvPQN5^<$XMbO4fN-x# zfU5Gsr%t+E?bpjP-_pw)f4}YG?)`xj19^N_< z4B5lJVqjHV#257ItAqC)y&+@8m=x2+WSw@|rItRR%<&*q(*)9oV?O`N&V7pX@q)U@ z^@r?gQ|A8Dbr5MIXNt#7kjZ)<$|DNpG1GsJwec2zaN7i-bQ&7rM0}JJ8%3K>$>QgQ@&& zhL7?8z~+X>Pp{uz{`>ioWl(63PjeL6+QC-X_^%rC^dlT!mEY03$T5LKri6u-w9Aai zjjexJKRBN~;Sx{*@0QgMukfMDa*ls5DX5>~+xwJ8{@2vsJgT}-R9HQ&n!5@gR-I~^ zz&_W#z%Niq^;7(cKQDiTUyI_w_o^uT>fP+gH|L8~~C?7PhLVUUB5z=(X0qaV7&#|1-ys=yQW~vTo+FZ5ExC;C{mmcS)zO5e>JWZUy=1tE$x!D$eFb0)#Tlu2n3uhs)}n z9S^sP7%W>i^N?8=dtRv3BU2l>Maa}fKzf-9|7?r@hGwGw1?Zc9)RR$36c;ogFd%PY zY6?6&3NK7$ZfA68AT%;EIFpg`D1Yr-TW@2x5q|ftIC-j!Mhx$lU8G3cZGtX}BAfal zK#~W=KC(|@%dRbNwrTs{JHvA$k4DmwEPL&sK#-MaiX0ASzPWHn&P;J$aQOdMM;t%l zzeL-gPL4kNQn@0qV5Kci=7koXX`>4%7}usaIV--K=;I$w-jctEABRF{rhl}R`0J?( zj)|ZPqYMjDw!fbW!TID(^*tA=ye${YYIb=%Rn|@ZJi9!-zdRO`d+0Q|!$v!)7C7T) zUmBGTE}Uo5YM3~V`c2(OiG+H=nX;lVOmbWIYDPjb1q;U1WD4(@m8O`=z?AY0nM^c< zetoROWOl6htp!JFcj0-NzK%wzLsH|O&&PG`X9;`|OvNsqUwJ%V}{WwO~HTkhET6t6^Mfp8i~F$BdP*ihhoyseh#-j@dT1Q(mTx zEoJ>ANO(sGet|*SpW;{idGjOu8oMXo+ph4di{fZr9KCCp7|cj6f(Th5h06(D)BLd) zwPsB{wJ$?9GVZ2J9IOpmS|xJK!IlcZA7P>riH31;b;;+`tD0FYt~LL*ZpHAVt%u?SB&iV2j$%Naq`!qziX(%%ntP(f%TxS6KMy+lgO8H-8Z3$-L<)(w+hIM6^9$ z5o2lQxM@3VWyB{07r-2ODTZuFd(>>`$R)^>Oe)#-5Cj#L8Snb-keZk#+m4DD1T3a9 zy9}~udHbR1DU;0wDHGsTOa&9%)%`h5IR^{hcap@c@G1DgE@U=;D!67ED4W8TYS|3+ z#qreGdgD0JYjl5chzp@ZAr*IDDde zH5?|r4!+8a_X<9Bn)sSxJB;Ji3LjQMX(|jrZgd_&Yi!ebejV)w1xWz8TnzY?>9_^^ z?1xBX)*;cHges{zCM`+*)}o_<0_;r9z9B~N%(zbbe6nshte@Yc*psIq0RZ&}y8%tsk#Z15aoqsTIPLdSNE);D+GQA^`WfS#CrhDPG zwUB~G`zrZXi>$RIJ>YkG0QNBibsoy=C20^;3JshSlUeX_-9TltRrPkNUzLGi9o15) zc8%mZK%9Kok+Dm1gOuyMwciUm0bwB4|46)F5Q6FA+LK{=xRAN_8AKL^kqXyMMD(9k z|9{DY%LDkMg^8IHaG$W<3BWChs03$OTBUl>5 z4Gb7~YChOjvIaw~gw!$TH%*d$tI1RV9;rj2FmdS{%lG%| zvQY*j1Fhs%OKBc8vLTJU1E;W4=r0IK27kY`BPJ&<(7KiLVz5SwX?7S&JegOqnOAN{ zR=F*#3RI*!pj`=@&iVizJes@^dViXI%M`FV2>?3>($K<-v`m94je(c-7-DcWHCcZv zuh?ez$TFQ4-0sd8e0_^4G>B%(+htWY=PlRs`Y>k9xyLXX2E6t>CN^Q88hQWY-QE3F zwK%6DKnQld8AwhRE8s5VP(mx20LN#F>=t=iD~~s8C6mVG!E>Hvbe$;A7Jp|{2oLh3 z>_;Q|oFrPP4y(!!)m`Hcydva!>OllzB9&uiX0#?%WYnblbY$;JW`n>quFrUE$%nbj z$EBxK!VNswtw=~AiI0}Lb>E2*@RJ&3YBmO*J6Mx3NkP3CDl;ZLe1V6jiDKDQfIp72 zLV&@H-ofx!lrVrK_e)$Oe}BOGB>nTTgl?J(a|?#|ZIs0Z0y;P9?#|<^Xl1gyvBZ5)M&`^Vumu22>czKrhvM z_uIkhAUXRF^ch{Ctbf1G^v?F_CQA&$2Z+guK@c@XXLmiBWH)LUb7n*M7!u^?F9UJb zJx9J>sj(YG1yiYETQSJMye5}VR-d6p)n}-@K4X{KjHwZmSJb(v1R`X3f)b5=j;;n} z92`_KWyJoq9QNsJIkKGWN?juuS0?-+>ly{@o8zFAZS5LZ$$!9w?rYZ|gwzTYrLSG< zTC&=;t~IY+>zdPww04fHNUf&hMbl)iWQNK?v$~wRIc6NIGV>MfhJcCIlqAD5t6^*WB)R-VMhhT#6mWkR? zT3g8|!4VQ|rho0ZTFRGP$#?)Z{8BA1>dfWM>=^jbCZ3_;EJ-}ahM4B;(#o0GgEWGN z3Nauw`NlVTOCC!ImnXL9fClquJEjW8`Kwuti6m-FVzw+KUSmA11pHAtacQy9L;+cC zb0hl=+ia|E=x=daXz4!P-d?{enCcJTBdUJI0gVW^gc^ z!TUAsA%AOEOi3Nb(P=xtJRVJ(ZEfIf$mrc+UQ#=;&lq5fosiM`@AGpdzyUX_OIW+) z$6>{a)@sbu<)>MXW(e~-pcNCaAf;@8hL4G18#4Zfw1m%*4SFpbcCmyaP5A6|AiIkt z+`_*r@^H??D)YzUpIjXTFVTbs-4x~dI>LK(gn#F|wcoHU@qEq5*f@zliP*T0b64sU z`vmW>lrYJ&)gf&fIW?&`1#wtg(|U4IEq;c`NIERwA?iqgpMBvEUHM{6XLDzF^;om| zpZDeIvboc;ehLh?LKsew7shZK3&Etw3&Ao%RE*P;PM=~?x1205%Kid(!VKu&mukNy zr+*c7y;pk=oL;_iQO4U&Rl|bi#SF`7qy;Wue4caSZh2cSPcO=|y371J#;pzW+EU>> zmgg2C@S&Ov2yQOEbS(HOm&DyF(7XVScJ-~2$Gad8DnRpiWv1cNn{vKG{TYv%*{uDm z+u2!FE|vs}YRPoBskh`A6P|nUCo2`yV}D8o^)A7^w2X5_1@~q|AdfKRHV5b-7GJgJ z$Xg7u9pjg5EjoJCn=d1nzUo9HN3~Xs?|KNI4=`W44L;vN!`5fVT)C=18ZT~2%2t~Z zb~zDbLy%G*jKW0T=JgO^aMPx@ZtHS=W>l`vJf@?lvgglgMS1e zg~&#@|6j|0lw|hCS8~SNUVQxqq{(2>g!2b6zl!ttV1&T}aO)myfZtT_%iHsEaaz*F z9@cmJbXL8mO2H%(J@*b(Gqh$L@TYZnnmg`pXs$bOIXU*Kbx34h!J!P^)aN#=6fTAQ zM!${M%-Sov4}+_{k0u`1D(IqLV1FC$ZiF_7pP0ov(Xzf!ze%I@2xRkn)o~1wO{^T# zf$Lu$0M+C+RMT5fO+UDh#qM3mlEq(nAsOdejQEXbrheo=1(_GZ=B`>JD!3Wq62FYI9mbGjC>99(1H4=^;PKm#bxy~ zj$PI?REv6E2%`z11h*D%io53SPJXB`m@9c+VtQ6xm5aOTdJ(y#%;a=-SHfbPu#x@o z_bz)o0@EV0H!E9qMvHhIlYjR?InFYx|GBId<*bRg@%z>6rvC8DMRj_CA8p*Q@&>mK zUzV#*XZUe>ENTbkuE}sK1xl&%)h{oq=CJwZ{A>$~O}aPlf$qA;K_+C3O}Q15)E zcWmX6xyHEwp=aD5@|8L0YJh|NOJXq|(k>~vvCK%YkbT8X(~uY3G=GhQdYh&-eKV|^ zAZcrFWBRQ2uW1AwZLmg8j;1u`MVXiWPaew9L60dFrfa0=Esr?qJpmj zEa{$1(Bk7MnAD1kZJhYO&dEy>Ldi`R=>n7eQBZW=l*(PqAAc{=fm3=iTT&SY@TP>? z?}54e0u!3DEoCXIS3ZV`2Yi;JOFYElNb=NJ8oi0Zn6K_S+_5DiFXnb4}+CeGG0LcoFvShlXP+ z-12*A+=meyeby(O^s;smlzVbnj;lS+xgJMk51kfGB_r??`f|06cN&s@>D|OJo_yjg z6P|qUm2ap=p^iZQ2lL}9(UU$}I}SDqFHB`_XLM*FG%zqWlacZ$f9+dMa~!u3z3;D> zqkS3T`y-`NCAKUlRdHD*>5xR$fu`58suWV8NXP#7dHotQi{Z{L*OF}K-~)TGm_`F= zyl!*@!!Vek4BiZNur>_V4L0E62baoV6W;j2<{_jwI5R|J24{yPzrv7>*|<1Vi(h4^ z5f4Z)ISd|RM4U%se;54V6P_9UWQdLsXYj0U2o~KHJ4lz&+D(Y)GvT-NUDFUCuSma; zS0Fz^UJZGOkXMTvAj+9sha|&7e`x9~+NCf!=h8;T=^-C;aRIYQb#M_w&JIsB$}-Q0 znFN_{8ZzW%d4jKCP6>~Uu|j;cZi4_`K%u`LTt(kiGzL}Fil>YnWq)r925s!%t<2sy z6f%Yh{dwm^hNvY8bA(<@8L~X1-B^@;!cZ*w@fpQ&d6&C}2$j<_ftnVD%DO2Pgtci{JnQUPP$ZLJIoCuL{X% zUcKK~Oe5B81so_8%v_WnL|uRqbb`LTEE5*edW&_6V1|B+C6xS7WH~J+TatonsIJzH z1>$NDI7+RN1+re&rwF9HfZa=X0z_vFehUTQ&_dS?=NWt?fGvl& zg0jEO5`Oqy2Re^3?2qy5S=J9r8=d<8YOcOn&g8pOdVh@jJsuahFpwXYL;7)vpZ^|q zt1G5*2g)}~%eg(G{qN`M%NfN7&1Y(~6Ft>DWzA82t%Cfkx%)TEo_}0g`|Bk%w(m8C zdxp0H@@I2rJAiJNJ#9ahcHVDUU(YXo{s?0T2UKu7@A>bR0AEb}YF>?dJ8eCNUnfHN zd|7?51b^A>$62wkhUX_s*d80?qvg!*p#F{}Z0`qfSOf6$rStpH2xe~pFAzeT;puSp z`1Q?8>HWcj&Dryx-)@JqC+DxWo3qcaE^oG%H}3}I9AMm>J>9;$y1l;GzLPwIHD7JN zdwu@d)lb6+7h2y-jn6V&r3BHU8>DfuVE{+L#>PfuTjTPC| zDZC!zE%~%Dcwa{(W~cGGJUV;Y7?3-UIpx!MO&!Y;3Iovi=IZ*{+w+SpQav_#a(;8O zy??$$0?40V{B-l>vzzmqEfPbi*ql8EfCoYSV`OZ(G_)gAE2fo^c@^8r5t*Nx>XH2U zshj}psVv#yBu5g&sceUmTN&wQnfh|5uM-cF`>9{#rgiEU`C^^=g*NKcFEY_O_iKkb z^^07xPW@t0tM&^uojtj}x_Gv|8D2m)kAEHyXV14k-3+s`S54cRde^oktN$S5mcxe= zt$WFO)M!^&LxF8scM@yNkb2($CSTzFm{;s@l{o}I#(K{nV)moS_O!{(%s!63*b|ve z#F$SUMlfY80QgDF&ZN?0R!qnBW0Z>&>V)8nu((9NlT&oN2IZYSy)SxQ*h8;#ABbM(Pe$*8 z^*DN0Sfhk1_i)bJMHr3$T_JYBZ+|X)Ru97i;lu(~2Yl$l&vtM-f}{?(rw1&<+1pp& z|M}wFj)qFPI3J|=@FCwS3whpNzxsA~F{}6N(e}sJ7u%;_e#WHcMM6*sln8yfc@e7_ z{gA95>qN17snJ~ES{jWB!Dyq&)>WD-0JTCb!m2S(4}rI9bRi>`Ra#<%jDLM9_XcC0 z9wk}fB?YKaqcmf0_xI2m!Wd7YjlYxM(-f*`leCmL2Du3mbw^`IxqcC4wR~yxCe^%D8&Oo2ff>0cLp{pLB~es% zqh8wJQ6mT7ig4yAYBnKb6o1H@*czCSD>zt4iAkpG9Th1MD#(N6?km@kmz0imp}n_q zA2qrKwI1tcr-#<%9As?XH^}3N27#Xgt*hYFjSPSbwd;Jr<=j7KKM& zE?jd5r;pLY6kVf@N9FLXj{)^sK0eq}sLE-QIl?v-#VqN*$*5`S)RUL>N=8fj$8uQlajPt1Y>F^*$M2j6LqW9W(bR6(AGS%Hl56_)K5#-DF&oR z)5>*a@1*Od64rNE0Dop|`&|Iu(l~lHj>Yk!reNv4EWE>>Ep6|k4q zFDYEPT~w$I^vc*TFH}XrZ3VmXV)a?SKm~XHrXF27#Zt$wJOSQM7O+ms2(*?e6PCj? zEF{YjGS10_)XvU^39^@vaa`BM;duo89Hd2#K?-&8q2^(9}=0S zkcfaZ^E7o}Re!=nMW_T08j4ui>_d>vwJ&>aKl1gF);jj?5;+RXI-a^~x#L#qgP4kV zKmYOeTWaf%{q~Rj_N4t5SgoQKPDaa(N@gHd5JcHZ8!8b{dgsLkN}&1q`Q3-mCbOgH zNp|kwm@7z-oDjrX&RQ^@TDdTkm6_6$Vru|r(u^o`qkj<#idpKFA8+NeFOe(Xi8*=& zFB(dPd6@OwxS$zZseOjhr83qxt!?mJ{AhRXXZ4|eTxstJKZN!&5A6`iindA=jFcqC zTCBLr>H|04LI6viR*KfEPm=@%+Q3X@zL{u23PTnnOI{LPo6GEwNoq2*E=j-=G7%^* zOLigU#D6a^DPMG(vM|YO;3`QP)YGNrf(p?!Fpi$o&;)4{fuHgT3Ze`}*F2ceGLB56 zmv22S&C`1NiX;Y>Jk`X#$uS%9G(s+E@DfoZ=58_D*?lSqW3DvUs0PCPvQgb2l+t+j zX=LuHw6FKf+#(ann6)3$F7Im@D`{lb*k~uSr+@Tf-5-+Dz;u+4T13* z>{Dc}ErFGXMtF^8X24jOL{mFP3)kWl+W4F7xsNUlDAXlVY5CFAt{J*k$(OzIIQGl1 zfgWS12$gz>+CbK(g=Kd~9(ARae8}6x?bj@@)MKEdyqPR9IAByHd~Pxxz{*zJEvVot#tu+}V&JWuU?t7F?HUF}wtt@3BPbaVIkQxNYadbiZ6 zfWq2pbmcBOWo=WS*1DaH(mS1*TRA)(gMVlI+7_gHs}o>ZVpr~uG4Z|4bCev6MBc$m z*c56Kn#6hfNcWr5>=2WYgf7(3xTAcpZF6(KfgxNBnvF+Qw&0X|Z^Bqaa^hQc*M*Cd z8TWvjA?cba>}m8pfwi-MT}if-+E%s5o@WD7V+l61=g!6hzFbnvK|Es$xj*2ptbgaD zgiy`g%QeE(Ibrw9mGFwSol1)~c??+Gye(9&glHu46N$vPX<=$gcUsXcEILMrPPar# zbcULayErlDwvJxileLXcl7+%3PUAMnpz%Z_b8c~ElvC}%eY+V{=31(mF>i~E7lLNq z=-En4c#r0D_vSd|bf*P9z1ayuNq^RBr~d9>@h)4xrLD5M92@6>jZ|{pX0@cs(fRGp zdpC!r2Q*dCk|GmAml&^!T{YXcg~#&@1$CPuO)3WwwM5F9|Hr_yY{L^C@qVc?ZXmo0 zPssJ`UIZi>wG2U^R*QD!TVUrIs@@kx^eSsEXpc_X@1ehR0NQ?M;%%RbZGXoShgTSk zRywed8Os?aAC(4@dBzTCS8-FG1|swF)8!50%;+@m%`H^d1V(~Z*_SNcAmdJrMwA?&NPa|#6=F7+$=%ol&aI43&&fLmB-3q*GJ9Q`$LDm966JAo@WGDnE`ysj7W1~ z-tFkN#90=mZh>|yOmwF3c5?&&Tj#@@0IAGAE37Dqz#I~-xxVKDvWcf#=k^hY)0iY)y z0$ro!&6N*~PAESUPu0$8yNuFtlMUPmBpKpn=OXbIcz`JX6XmlwXn!eb{Jtz5`m>Hc zp%46zu^$o99_zKe{NeAy%r<3>SvtvtF3nFk|QEs+)%5|giF z*^gp8Fw8-EkVJviQE8DX^0pmDSe~Xy))b9KBlHaP8^vdCTs%VQ=u&IZmUjM7+sGmh zKM*Q$*(w7OJr>B*p;yqLl^!-39+K&7Dvt{iovsxDO-!a6YJaP&DH+d`J)uUxluskKeve+XlzKsWcl3J5;cEF5+B{tE(NAxDlIZq0{HE`F zb=z8N)PGBGq>HK8I{D9EjYI4y*VA9P#PC1y;4TOnvu`ThuV(b7 z)9;SH571tJ2am40h3Pj(V(;bVfA}}owUbdv69F`r@P+~vv+!uvESJ#{0Tr{`m4qCV z+h`TDbh6(+lg5=6vuW~YACq3P6}ROP0W>9(Qt}qJFE;@xE0@s`0Ts7xVgXD!ml`(# z6}Qft0k<=kSYiPcx0=rZ+Z&g-n*kQLi|YYPAD4vB0T#FH3IZV?mv-v`6}KWP0%$3h z*9rm@x1Li1QZttgDgqR@1cw6BFqer_0u~Z6I5G+^Ol59obZ9alF*7qaIhV0h0u=-_ zHZ?exk^ciHe~p)Obe!!L=#wrXLt%xdk0S^OLGesP^SO<1W=pM0GPSCIqCj( z2MF5&oh(g^>;UpcE*3yrP(~9Y8-S|4i6zj*^S?q+^I5pKIPfqsy1TnG7}+{A*gKgE z(9i+ge=S`s04hLdppzTW6!2Hu00kpk;6KeVz*7L!EG(V>rBbywb8$Cv0s=q+8%q?1OVj+s7lKL6dize|1y^QmjNB%-^T-BW?=p&+`qm53S?>bx3iIniM_3Z zk)5ZdojJhF(gp}nl#pX^@o=F77}=TrWoTsMe{2u(H*zzwv@tRU8T?(m5kNv%8DIqJ z@!uUfn>blIxHvO7TiX29CF5UVKnE>uXDVuMYYVhUNfnu0UzAe_Me>@V{l|KoHf4I2;oLo!*-~W!JWMuj8O8)SbwllK_aQ~}d z&`JHLXt#e)0`!ai@3H^e<^MJ9e?|HK82JCK zNy62}=5Gt?|Csz=7Dl#~HlF{s0nM zC~*c&=HDtHXpR0mrMR7mz3E^3#=_14FmiG-@`MLnG>F&%-pruIGzEJ6J<9+_20MEf zkP86RoG-x4-UGe|3+Hrhg!) zBH$kgIuNtp2vVB;foy-FM z{#hPKX88w#8nF2TLEYK@Q68w5KYafx*Zy~OkS*v{_lFu(ox^W6=tvzvdv5>7VSwJB zjE;XGsM^d;Ec*@ScC;f9;%!tCJJx9rX8;5wwv1;lE#aK%fWE1b%7W-h?;A zsxGAMp+=a%oqlhe59&PqL5qccyx0KNrC)s7a4S(YCwp1;i^NhNf3t*vRi}c8<3sNH z!nOBqJxPNn+Z{cL#GyHfas2$-9r$dL_dOxmJW3N-fo7@*F;AIOKbR6x6lxcops9Jk zDg}xURbB65k~<~lX9-T3&^CpRuA0x;a@d628b7yHT$+ss)%MtLaH;aPZR3J>qV*!u z6f((V`8poq6Wza}e{K#853Zv15p_oe%D4sXU66;lpo#Mi5{j|GeAQSjM1ILDb34gI z_coTq5IQmKuUPVI$>uHeP-M?isqa?1f=!_J?v?0Se3mP;PyLc%!HP)I^Q7cGI^De) zVN=3-`YI>r{H}plVoZejNX^6x&)rl#i+~SOB4rggjJligEkaQE>%UupkhHd8u}JOeh# zFV4b*x=Ee@SfLMc7aL9u}SC+svWQ&yw^C zPan;FOkMpj9wWcm$y@RgeH4c@AeHQH&J3_Bj=BFj`A$%iF^XUOwJQDII5@g#%<;8G z@B(ptG2)@p?iFVB$AAFIeN~P)p~GZImB7BMWIp%dTZe>v5ngmRv@Z7`7FT@z*E~Vv z2RXwwe__rx8O$PJ)5JJsTZw+cQ#r(Qm5HHppbicN;z)^-)uY1&_Z+N05^ElOL``(L z)OeehU>To7dggbw$sc?h2CY3|_M2Ei6WP^F2o;69bv=m5Jn5JonM{_^WQg&@X%UYP zFagcEm*4=Fd1sNkBwGGWupcVFO?7@)FGTZu zHXBUSNAbcJ4n_@tka zKwHbeTr7}p6t9H->6iPj3))zltHip&EPfY8W8|i3Z9(B`$NuOX=wDxssufDybm0p$ ze-%@6FiQs4l0))`!dD}%dG-=v|`=tfy`Sr2?i%(*%R;7hxBjnHx}r|L_069r4E z<;A%fPSRXAkCU*iD)f z&Ml5QBfm}GC*lzUGVEtHW-fEVT~;_NN(0MBc=a(jZqUxRH- zcZW>=_+GVAzt0O*Z+2!~AmLDMlFUk9!71rDo6WTPni%8$vj?+QUsZ{ zgI=DtVyZ7iSTLMq(AI0&6LVMD`6?wM>p%s|njFI9f9IezvK z>jU`&w%_@Z_P*un(1%!~2qMTJ^9K3%^4|}ZfFg9BT}|9?xd>wt7*@fdY-j0_L2;2T z$<*tTq{)K|JkkCU?{iSU^n>xTdLC8BiGqae-7`;p8R4KkvKbJ;w>{ObgZDgYqpTVX|tzRs$=b9{R7zV z5?#yk^78{xrAjsxtGw74a}b!Dv;%t`z^SH}Rp`FtD{F!LnN~5Gt3|3WFwt9Bj(oY) zPK}}0OG?crBn1hX+g&+Y?~rug*z8mldG_W6VBm))syu9`io#oCf9*(~KD`irDfJ8+ z2?4%n;FsYzPQFjQU`2ezy}G7O%aQk3upv{?L>ax+LuKJV5oeW>H$oi^E5R^Nb)fro zIs(RVHz)YeKyM`@VUVpEJKPt{HeCEANzncNXurDgY*&xTGpe+UVEmZYDYlP(6-9mO zeJXz9XcaHSqnMaLf1volLuSq~c#tiUc2IrzJVdehNgd%_7WL`(nPNWl47YUfrf1s? zEP0wzk2&uUyep&Doe-J{_cW^&`ge%$JzYAoY0btWf|rmkEp&9#2@5tTK2VYNR5qog zXZ+gCL0G0vMc#=A$4MkgfYqCv>#uV!ZR;?&v9d%By1W*Ke^@`Yg;XUmsaG(vOpPm& z8T)Y=ts4u!Fwedd$TO7na-#DTa;loOqzRc?*zJ8jQF}U#$^oToqkP@h95bhoomNDw z=euce0kMFSSV4FS<9S!Ylb1avqs-_9(->D|Ck`Z&a$iLD$i6Qd7Zujs^ zDd?y)-TP=xf3^|#ELZYcjcIdTB!!vcmB*)MIebfITBq*9K6fr$wCPK9sTiww*E@uK z)Zo)8-eAKRb*${4Y}=*`?|_*mS_Wl#Wn#oX*n=A8e}AOUylo;!C5%JC$n=tMHgB_t zzGY$#g@cx`F>}ScHT=^M?Y-hhv7|M0TIbbJVG;LQ=4OY3Agk0t|MgE zDxek#EKDWZKCkc&4EBs(j%;5I+R^nVQTTj#m(27|Qy3Kb+RC zbgjtB9Fc-FzC|0E`IWrXn8#E2fTKLI>O)S>f2m3#Pf}7PhWx6NBR8K7S#p;mZ_lH6 zP22|UhrwF>E99Py?Ry9e@NZ-@_I|KHHEFWUt1So;?_2ROG*2=QM)Dy3I{vty8A9^s zzfL_up}nGuXM4C=QJv{EGQcG?51@e_XD?CT~KQ5oY<+eZ+kR}Ptn3XS*f7{iMjBShsmxJptw z@@nB#puI`HWAJ4wmc#*;CK=aEyM;#uM%u0vuzp)xn*9fK*pQ9$=P zpK9eLr1|%Hf18G6f6Byo(TUAU50t)>m^F!4TUc(_x8@>d1aFAdI!`N^zAP!ue?Kf% z-w2LwOP1pAt_iA|{|P^u)u92#B;)AgRxK5m%D1Fv305Mwq?lk; zx2!;2wxwjDxxfKq!;E?uuFKMp##;CzIhm*9xJW~!dLp&mB8-qVgX^u(Y9GQUMFlV- z_SCxW8#Aza18Zbds$INvr;X|ye}^?*6NF*uM{7MkIzyK5yXY!jb9TL*GM~Y*r`^{k zmfOWWj`zH!S}8g$TE=2-o_c-J@)oUo$lamTv0%mJ>*2RYk`W~yM#U{z zQz@V_*|htkB&Z&Gx@@`t^EhC{)lQ|tA{IBfKg&r8@!te zdWLF#_I~QujJ3=lvAd)^e-`wD!XkZ{S<(ff*v9OfCH%bx#2Ubh`>Vkqw#O)Q5HlW;nIKcd{hm{Tzy|uy&5mf6Ja;T+B;kWvRwC zY6u9KZK*b~0+~PH{nAxnBJj$`@+~5{i>B_Z`dE?8s*RVPo~iyJ`S=(0O_X%&H0!bG z{d?J~xC*qnm;~>^YePsmjN|hS-J&jaZ~;T8p4;dHAUgB6$IO&88ou4084_J61$<{+ zTHk)gFIn%GU1UpUe_DD2IY;?>z8d>oc~>*r+iuB0M2~$Vq)WT*FCdyKEzTN8+#>w8Ce2F*t+FZbK);LdY7mS*&AlEV}4Ya~+^ zsBYb(XQK#qHt?+$^H4CkO$~q4r})nKBJI&nwA-Q2y_l&(f94xfd*gkNZc(F@J~ea= zN1tF!rO-`y=lwj^b%gagI)4oPeQ{FcP;17@D(pj}MNos}53`YKYm*L>bIn|gT_y>6 z`_)?%LI9v>P55RBFCAsi?_~f{qf4nL{vJJ#CyEl>A8+M_u_DBdIfZ*J#$>=LLt$?b zm6>aup)Q$pe;9dSX}gzD^yB;u(rI2{x3>B_s5q^;%eXo1LHF0Dj$;Ad1bB};?Mp$@ zJxiU$}>i>UgH1XgRM>@9h7H?A;Et#5W__&{(Bp_Idsn!AI;i*o0wc@TD>O1%PwaVi~aCp(Xb*r zVso3Qe*^%nLm0;17MvZ9inNm$NY)8)^|iO5i&{TomIIAk47ilbsWe4Vj&^cw2BnDy zaP$(yI#IHcM%DujD?JNSs4@K5bgP}R9fs=kwWrM+w;c}b&lG7hd|&4#b1c6`pddA1 z`Fc;?P?Dzj<2fBE6tY#``sp@e4V#U|Mul&;f52U*#`pPCBx1tFJFRw?`%6G*#%3^u zD^d82;>NaBdeAVI}~49nkHqfx$V7*cVP@SLiSB7J11drX?`hQO6d(8!=Lsq zDC?A0*Eo`%f0D8fW7Xn4ex@I64cdzqf9iZ-T$?)_`g#Z*h*F6Hjp;fXoWOmoTlK~9 zW%nk(DVCG8&r#`W zm#|h6dil&Ztv<3dQq~^VjV7xrWtcGf9_unRAen?m=@uYpD|#X_O@%g3WUwNw zHX(^KywUqK#<6IY(fuzCbOy}*PZH&l?yPVRft3zCHaJW@9@-7tL__P68r7_IVDEAK z3@7z#IHxLXFD51QNs0_b%psYh37|ij3u$X=W97SBl>VafFsHn<4o+jge|wUOS;Wn2 z`_dJpudI^V<^yJ2c{57elIj@FgYWw!+r=M!8uR`nW?ujG{>RKFFnk?NY z-*tY2Tn;5@unQmnO<3we+$edK5W<0_`gLh5?zX$Np3+D^Erll8S!2u{CdcV>zRT#K zStq$8v4|nOp#?5E^R7E7f5Qz7gVk&NkNb@BAgPUdBgxyqA;Lqx1s)`D`UQwWc7hjL z6$_gh;U*sxnUQAiKeQ$*UV;sBFqe+Wq%)d+HIIVN-+ z*&}4H=!5a+-U=z5!)%$6g!yRc3p2;wK@?A2TD}P1{(e5yxuc8L!{!#8AKd(V;d^Pf z?t$(l_UWMrSyGnbiO2=2Ii)8Z28F`1tgz(+yGSRiZ~o&8a0mtcIE^ezdrTo-&0LHl zk$4D?z8iJj21c}zPS3F6gjF4jYM(M z6U{FhZ8K;`f8P^@pqsJNosD0vjI5h)WN}_Q>CSq~me@X}vaf7sejBM7X{Tsar#r9X z>@GezC!o%If31Z$xl*s$*xfU7eshz4!+bt(`Q{0ZMkh?QXS?Ojt~?Q@=_v`xkU`W0 zb%l53c6~l7r;Ry5d8KN(_ipQwQ>dU6ndZh4n1Vxep0XF6GP?krWJF6{eNtLcn_?gkG`B~5)2a2g5HDO(U7x3MfXR9j;QOKQGeEPo1KsSp}|+iix9s#(_Wh94Au!bW*&NhK(rqdx0I>Yq1#m{J0=x;6x zxVSUTt@`ON@Ub?u@`z=NxzlgElRx)me@+#l>o1>WNcuiflHk66n<+sO%@oF(jG*)v zJ19z+d30&RY2#LKJRkhUk1;a8lb~^B$z}GX2?f*sbI7+17l5^KI|Vw5@M=iKVDWPE zN9q-Ah42Dj8dfo!xL+!GC)y=^h7<2XehrGmuw-#qcau^DPT{8jR*%ZEes6jb4MrNujyh#%#y$&x6rx&TylNld9w%TJDPea zL}>;tWOR$=i5QtC`T%FgHYdC`D>PPgohUXKGz)4gqNabExozlSiv?TP5j8B>6zYLe^lRbXk}1}zi{M=#%6arjQ;53SBTA`6V-{Id+#H^ zW!}9%V>HRaUxIwlLs&IeB#XKIV#R#j#{|~nCnx#Eq$3+c&M!XD4>BaSiWcET0Wl9Q zoh#j3DS8faN8y}Gig5x~X+5t!)8o-ZJ#V_NKu+lp=jBSPn+=}7dAdBifALUAvErSn zG;#T(iN=K@YXJGs7RkB%uC1uJBJqd`Koq)m<68{Y|ut8IT-zU&V*c|s*h zS-$8V0y-xp<3y=U{Mdb9{R}qKO1ED0$EU6;d+8s(bR^D_XJ*xSEZcsOX}eTKB@dNu zMVP+P4J25|N=q@r*J>g5e_w+(R;zyma$OrUI`q?8KO5>Y|LkKu_R{(RmMM$dk79Br zk0nv7$Z?2;L9S&3p0H{Psn(cb&p|8PKvJ)w`jbg?&p=Z)TWvtfo4xid75QZQ57MIe^PK+oMYb*d@zNt zy?!(Jus)oW#z3XK2LI^1ieR{B)0HyVcKU7Jd9YTp$>3Ko?5Sj2(^lZYryR{`Zlo9UD&*Y zS%x=LO2#Z#=i7|zk3s$R*d?ynAkab!#%o|)spk1YF{kkJjdGWe~{%FDRfez%=J7^r7f6It2SA3oFDP!drO#)ejYYwFM+E8nhDD%9$ReL z15Vb@b9YCYa=IlBhltwP@>-~ZDGUiQeThlHD3OCHs`^lV0l!gHaeXj{Y{K>D)RaKM zJ0F@&;d6tOctq#`+Bqj&-eL0z!|Z8u9`>txrUMLVf1brtDQH-9ZW1+ox$LNWLn|j+ zxGg=UfTo=Zio>Z%{E9O!JX<~E(sBNfqz+e)d2G?j*Gq%FGg26uFdmaEHR~&A+JUX; zV_TZgoBCPp;t$I%6+f$feb27q2ke_31>$2tS94wR?4{UU(Nq_6)K(F{7ge$B5}iH# zNM%*)e-~Kk&&Yl&;z7u7%H964CG|0nwHL4LSQ3eeF~97P20eXHDNR82qP(U_P#Afs zN?{K)NVq>}u%MWG`2oUf7-&+{HY&Ta6oGaG6(hb*&y?qKnYpu#&#``S3Yght;ZU2l z!OwdyA8Gv@2!>qj9Q{%)`0X@b^ycy}3?`Bme}N(O*bQ**?GNZLOgcEo;C|^zZS!O` zgAnLv?dQbN78xQr22P7&W&TV{9n-nSfU@`ThXJyLvE`F|%Ikgavv-tGZsazJYsR(^ zh3vqzIxsWE!{l>CAn3?QRo!xR1g{g#C158e%(%0AxxCvaSuLsPdck28QG+xk3~}#2 ze^OBJT1TkE2L^UK1_Fgpk^*Hh_J#-4k18&|8Ve!RXh&(?2d9S)iA-mP59&#MlEOYq zfsX|$+js0X4UB)OM}Gu2Xg=|ky&%Bess(f!zoRZf8TP3w^F7brkP2zM*v`+tEsr`;jYmZo8IXt zl0kdJ1WGO}{e8~|(w6Cwslec8v26|X+67!~C{mE??jYXsuU4q}(n{z~!jU;jmmfZ~1{5>!0oy^se=V$t z_lm<-KJ;Q2SAIqV_0S=)5w-&p+#T1BRe^YIVVubb*xb!q?_N`3HxQ;B9l`6kmnR!r zVvjC8DK6_iJiD!rNmgs1H{6zoLq49#L^fOdOI;+}gT?yFe>?AqR`zpxrVd|;A+zY5 z+|*z}repb87>kA)M(6QF%Tmh|e@5tXT-B!&I%eaJ6hlj;;CTElSQQ?;r&i&1U@T$P z0k1$~jTpnR7l-v*9^Vm2~|=T8TXPj@;C;<%)5pQVM?#hyu>YE5BsjFkkRw?95c z)+r?9KXM0nb9X7_@4g7exqa+k*-FG$U1&6h)nzIZ5@IIFMntde9^_S?e{1P#$~|k| z#so(wVmN+fmM4{NC>7i|Y~Cw_zJgAFl4~CS)dn~I^N7W(ah7GxYAw3+sR0;`G`ULc zo6;E0E4MVG=mcC%nT{taE>WwB>P!L}z96ol82^l*UeCzlACA5}m%GTYToIORHM8vL zyp<0?l1)e=q*jPkH`RM+*{c z8e=~p5|7l}p6x{<3E!ZHB8!-zDpjNBgbqU%{cY8rfZpoN+`wD%L8%rbR_cy*wj zXyWxd@Y|-mY!0Gk^7E(gpxMGmJG_3KsH|taw+&()(xJ5(4}2|}?7&7NFiEWf`39aV zc9izn`7KU0*oX;(e-V?bXez|YD~^w|^z!KOc`fCUgj93ZdLzaoDw(zyZUZ5@133Nn z{Hu--d+VaK*E%uB(kOVk*r_W@l2~(vh6!|TClf6O+``Glbv`79LYm?B zyU8BKaB|G^v5E)_Mo6Pc=9(2~FX98Cs_!+YZ*EyD6rK;CF04h{#1GrF^%}CLg7@GE#UyUMMWmCQa2lF+3uD4~nGHf%mlTp^3 zteuA2KE~?de?`m3AU3a0Xz6~AHOGLF@+}Fx_t{`jCjhSl zx#Sc&l3$3J`5!GS0(7PM-_xGE(fSNEP^Mr(S4+E}iodMam~-=!Ao8$ z6>?~pmrSY=DffjX#ODNWUoL;tu&G3_!kZKvI#)V?u5tgqKq@S%xZ3=bW9odkHJRWg z{#`P9-!byIiT8_1xi+RnCZT_!4$#p9@?h{s=o^`yZw$gob52lG>gq+CT3b;7O7ItG z5s@8Ce_dBi^tzRDmBsosFxi7pNR9RSG`u%ujfB3K3B(DX17*VbNowYOgTQmYQuT@D zA&mwu)`&w0H&P14u1Q_{=*dGZVwDknUAh(SRhQ;U*(h0bt(pb`7>Gi6A_&VE{sZH zlb#yp+}>=3gmv6R1vt*;C6)o`CyI~zn53qJ(dZgIm)C)~eXuH;oO|;}?H0*(3I`^7 zf80!0S`N;tRXZ>R#iv;@;!M3J6#;`vCUdJy)-w!VyH|PxJQ?aSW?imcUf?G`r5l~d z(g_(zgrmNkO(cY>TOS;I5QTh@WB$Cv9Mo9)NGq!*Y!RDcV2_QEVR+|QmlXSILg$DAh#__jUE7Bq{L;z^yhdyO ztVa&l&l>$37^62Y??vYsNxmHkSO$^UB48YB_sMW)Y9Svi=B#%W4AqD6PE?ol3jp=H2Fc+`jvfAc0= zsDlj~Tujju7fBZBO)Yt`(JqL9M| z?w4%`H`D$h2qb|r8Ns>bx_~{w3YbYU@$%(4@yc}n3^&KaUicl$5Uu7KE~P_ zXzY{Sj{DRLwp66n@bpD_aY$-53u9qEk1eE*h5<#oZ8vC)%X`CKyX zhb6=^EnpIs&4Ybo4`s)V69)c;mtv6KB?Aii*Bv=Dr zJ*7J^^5)N^`17z$q~P7@DOF?4M2|cWCbVNR#NZ`6gzE5J_VJ=On84Z7K7a)APTk;+UJN=3y3Jm_L|WJP7G-U1Zs-P9K}80UlN zGbDiNTwoNoFgV5~)2nC@9rdOs7hD+Madah*qh7yQFa@#7ffDz!nLmgkYB@vXH z@_G@F&XD2tYa7xgpLSp0cE}4pqHwvcBg00a)hVe3A@0Yx4^J5u zI{c#C(s`+f6fs80650%m5c38 zf7YV;709|fEbpe7`d%ezG#lTpdXH1%>c-+EcNWpu7^hfAHt=ltlW?h}^@9H3HSWsr z@deATQD6uSKdpd8V#N}0WZf&+gc$abl78T82hoWfseH|M9yGsEU7@)eAP1}CkDsfV z=eDzRU^X2K3H|wFJMd4?LkIU#4n?Z&g&50lzr$JviZs%4ELX7n-Z-f@%9^DN$&wuLGS16Qh-=k=NCe`6hF zgULHPY;FQXptGjzxLH$q?r774J0lE@_2aJfG%=QAIQ2EZc6kgN@Aq607a!0|rEv{& zZ$Y+zQ}Wf{Y72v{8M;9x7MSiz4uySHSX{xjG%&ck1$TnGyL)g5?lx%9AVY8q7GQ7- z?l8dM5LT&(sbZ_Tk+cPQD%|eRJj>x;ZH-v zmr1ZWL7B+3JB)#BnWtZVKx6{yNeul zxZ!9BKt(#%O?2DKKJG8ijw0m4p7h2igFai>@A2Gk2(k)eIJJ?7(rI)aNAt?K6V+@l z{W|t#nDF28HzC%SVoyrnHI5=S2>?UX#6zAVAG4D}_@7_7l00=v=jp!+eW5D}ft_?*e>`7T)E9F+%4*xB*{H(YX>SipQ{!tx z1n5WVX$+p#7Ops%=xliwacNM&-S@6<$_i%BgNARTlU4UiICuP;#m>a< z5+lFS$2BvJqK@Tr(4FX~l4v!Mmns|IT_#vSBsDT$;+Ok3USxqoX||Wp&5d78Hbzvy z+e5Lc5vR1sQZ4mi>2*#Ij~ZBGlhQPeft~Why1N*_qKmQ2O=x?O}OBzA@OmCr#Z(m zo)X?L0ow70ht8Lv8{h6e&j{n6sb9mL6u;@ps(j$}A{q~6w4f>&Y2x%&NLgL@k%bA; z`3xaqcO15UC|bv=V828va8Rk0Z7Tp^b72i>sQxyYukkgX;QC|7yNs5FRfPa*v%xzJD0_r4c0dO5vAp=HSEmf zoa4`F`h}dYtP#zw62T1X1h85{(lekn$gj=zuva{A=l4|9Ol}AlSk|McX%Mt5uM$n} z_gdXB;2Z5FYl`z~`r(OvW(P%<@E!ssl z%p;4Yv-^G}j)1d#lq3OuWT!gUZR)2?m$?)1+;6o3tkd^Jx8b6ho=L2uXP>WICS{i; zEqfC4-`B7GPV&JwF6hPiVd)K$7^8f%jj;o2!a#%wKn3GSfuuAo(6l)MaaHhc6U?E< z%C>h)bA?p9G>32Z$I%^X46$j&G5cuE`9jB6!mv~~)~rjr+QEyOK46@|7kYtnLU}L$ zi*?&o60I%E9<68Lb=wy4z2oszP&PbPa_}FZlLJrp!P2Ze#r+57^?FcT6Q8j3a{brj zcrh}Iy2{08TAumiy`x9D5bC-{F(y$lTajd%APW!*Pb|D`5U z2xGY+9;F%wcOAuY5%8eQiMbv#kVZ*7&f@5&XuJhno z@yevX#PRTQ-Xb%&s;Q+=9RtrqHxs{L@$iiP^K0X|^C4l45TQ2y^jzpS)KPdf{Mi&G zR-!J?9i4;k2&MyS;5qY9`fx3xBm(wgNwPL<@p8v)88x&Ek`EIP|?& z@cTYIbo2u6S#upoTXhmIC|xXAn4Xae()5?Yv$5#1k zOOagyBSnlS$1TSelAE3*V~vLG-Naq63Z)7d@+o0}R)?g4_16dW!pE2KvWn?|3C%EycnW6<`BfqT1)kknmO|f=yJ=V3g%%^XB zu^rmD-;~fRhthLFJbcA&WZ?2pr{7qg-1k}ix+Sirnj8caWjoY|mqYwnrNQ!us8Nqz zX|hyIHY;ODsE@uqoG*GS2MPSZYr6=e=m_DA$6=gG6Ta?5dNZDs^!b|F43G=FRoQBR#biatPq^=n% znCf6>q8QYZ$DT$M_2rSzZ&qJzS2~6Z9tg7 z(8`s)%4aizc~i~R&zRxbZ`Z)&GQ>WDDLqsUsB2~@zn6}=d+Dme9~|>(ol) z1e+Y*$kZUSYdgYx^8ikcxg<$V4@)JHOPnm7ECPfqaK+}pOKVTmcsIzx3Y`^$#lv_X zD-d)MXsddwWwZB~?BMrAynG3TL8-8_IUl%X)Cu9U$5KvG>X48In;EJ%@4&NrOZ&a_? zZ;Wx2zhoC=(yXa2CWHAFQD?2>ZC^x4SyA}RqmjFi9sACM@_aCcPE`-)9pwY`skK8D z(I>yAi&snjeFs`hJl55|xCx;8_X@YsI-mC+$tn2kO>heBxkM151TR3}M4uSAfMy18 z)#Y3D7e4^T2)@Gs5J8(i0)!~QJ^TP-D7+t_iW;2%@om|k0SKiBAN#&-Fz5iRqk(HO z0QgYFK>!B=JU`TX7$AWFF92;C1t0?eJR*Y7P8a|Q0OlP85P>IP00=Z@3LuRD_8fkD zer*PDg#fM}1(1NJV1Pzw<~%?a0o(xt5WIbN0E$q)MZgLI_{SuG07|<8006*0XZ}k; zphxQfHw5tPuQyzK4UmLZZUJ@?z{?8&V{q^~z!j?d=RZ953V;w?cMWKQMj!kK)33jE z@&9nw-~V94t+xwFp91Is;Dp_`hWsx8v;c75K41iDc>{1q0N)}p1NIU{UeEeWZ z3`DB`U0PuvCcz7VFE9`($oSE@6rH?2dD93Ai2R@GmWGd?|G!>ewI(LIt8Mrp1r}Q) z8hHrDB!6{UTJ)urX)tJ|IV1F_FoicEpH|4UIQJI{+{SK4n|0{%E~8PBI5H}%gO~5(=%Zy+fwih@G}?Y8B><3r|*3bP?f|wxamN z0td0KQjf45%tdoVL8FDokBmUX=u;+VYvvtZUM4N1*c?H2)cX)WoS-y~fS;Yn5RLeU zN!7B?vN@GS#)RxT&(e-F#Yh>I1>eY68gJw$Z&XUtARHS78=F6GO-(ZyPfblDhk;-P z@r%(o9Ptn$h_on~qA(o3J?)EHtO zY3HJ)6q`w>e&^jPkk13aoRl5ODIuKBC^dLfp6i6~j>ap-YFD|LNJ_YJu1(vobnxFd z)$yIO5&=H8Z~9s$54>OF=lsHwtgL5(g!& z;`vVR)?{U?L^uK6Gj+0fnv(otR>l372{9-)CTk{vACNvGEEqZ*e^W@v`zUx}`3il|f+UxHe9A99_Q@%pu-9qW4OkOlo?1DT<*9&$H}LOrZ5ME!lbUb^k0i z*>K)8%0z9|ptxHFq!mU&!a3aLWh<5%ouKQUpo$9$5qb-|a@dF~v;E@wyLi6K*iPW? zz2!_uNblsT9+`=g)cC_v)sd93l?ibOi1YDqKQ18s6GyzFui1iqk(VS#)1!iD4-9A?;U5{7-!~yXySmozDOV7ofaLIFYhP#w$I+=7aVW8E%K9JZ;eDAV{3`E_ zgh?R>Y~D7N_yPD)pdQJf-_PH6uCsIL$Ue8*gY)`*bWwCS-0>Z!BIx;s0o>IF5`Sn0 z0nK#o{7Yn$noW=vRe$uru10O!l&V6KYKCFt_j;eKl=%BraiY%>u_yah=XQF?M#&ak z{E!-gwN<(VNv!kTxe(!}tm7hkhQ#!K2|~(S(8n_`)#iVpL>|k%6p(h2N*_5Kqtkk>&~3UMj=J=SbyD_c&Ib(^|xJz$-w)Z zo!=j93pDu7kZ38G4$Xn?p-ds&Vaju`ER1isgkMNdlV9s*8~-pusrXdfNj~s1^6}=_ zCsIPE1KEVKk_^?F7>1I_a1lAvIqWq;kcWo;R_}bH&ov}bnQE>&XoOdd=J4CGWgqAPO_-YvV4i2!I z@zf$4v-h!43)>RZE!-S9MsFmbc^qk+vD=TZY8id_U`h1FwT$%+AYClfdHZgveM&4(%)6p_`~s=3YLo;2iaO z4PgvV5=S#o;WB;_EH*M6gRj)8fr{{U$^!J%0F6clop$&0%_MgBLEOvrnp#ORex7Ke z6~7i@{N^NvQ2PnlyyLD)h{q8$T%RkAzq!fvdsdX@hKIw=y|jZz6MnPCL3K+Rnu}1= zn0;uL)W zp05V{41N7B+Rym0tMmGyUofduA^Yb|So>8i^!hKe=P5z|I12WLxOg?=>3S#Pmb$#Y zMTLXB&v{v*PAv+kx>liG*C!e_yGR?M2s^4-`x~Q?!TkWM#FM>CzR1976kfL;B_|1{&Ck%nIN9n?hx$4#ML`sdfa`OS9@mP( zsh^JrU4?L)VbH%F|Aovuc3|uYP;_RYo@ntDCK|I>rCEZTRIk(KL*=l%e z0>Q`Q7sl3shDV9il;|c9uOghl0B!`ht}$ZnNO+>G0gd^!<;jTn%gYf|`MGtjm@>vu zsU`%x?w}@IGH&3%PL|Sp)oFJ<6lwW%QukQ)M+m|c>{=ykLbMYU_mRD(Vs(VRsv;=R z=x;sw9uh@pRk{P$`;A4o?8t6bHj{1>+l}v=5*e<>wFlF@hrkEHM`QVZHtYqRUmQ-~ z8DC@r)|^@zeTY>yN_1R6PP5n;*CXjKmndlIAzLeiPwxj>Yp@ZfQ{5d^Bmm(;FPa(} zRou_c5tsAcg?Iu3bccF7AAPymouh`BqAJ~EfYTg79cu5`Ishd20&86=ex>WTLt>b_ z0&BTGhD8@cfc$&Tx2vwe;)#MNXLJIqO=VQEvNM@(qnO@Cr(*}JS{X@2=nXP_79J3ts% z9hd9XU!-%boqbl}g3ha+uvjWF9@wO2A%FU0{AY*c9(fJ?Aq~~y$A?sZeB3s<9m59t zf?b8_w;?kZRM=0@1I80iT)Adp=;ts*BuSQ7gi|y^^q^#NB$b%Tqxz~jtkJ??yVp-f zpk&57ugY-~1Z%BOCT@#RriRpFJKuPcmgv}lLnG#Rig?>$;% z;b-xyfliuOaLG2VVPG+e2{-$)P++lNQT>)kR?V;O4BqMS7-&fEvqHD`Bl8)D_O2G@ zF0^la_w7_4{r88#CyWswkisYbq zXc+(9*#f}{5L|NK*7-|s9Mezd+|7VO zG_Bw&0b<2YpO$l_WQA85)iqJ83L~s3YmL&w66kZtN8!XGv-F>Wt0Qh|NFo1fO8IMm z$$71Wg1^t+xmx)vH&*Kho9#NZGC8T1^b&i=FLW)MvzVD^E0sRU_Wi&`8CRrAqP;%T z16-Tgj=?K`q}8C*x_ccXWbZ4rP^u6fZZ<8PDNwEi-+98Z58PV5U|~vmy+a_yhG>+R zxX-o6wFj(-GP81_paYy|?IkCw^8DCgz+Su%IelWa(N#BZa6m8@V&1zs?Qa&I_W@TI zID@ic$#oq5>;b3hfs5U5C5!;zMpfD(rHCfrMr5`k)$B)|_&TVQkzqcVTQ^M@OE&-Q z1XPxI~Vj@*BNz#qiK9UyV;M0d`JcfbBF zQ)y41n| diff --git a/semester3/analysis-ii/cheat-sheet-rb/main.tex b/semester3/analysis-ii/cheat-sheet-rb/main.tex index 49f4e7b..81ff7eb 100644 --- a/semester3/analysis-ii/cheat-sheet-rb/main.tex +++ b/semester3/analysis-ii/cheat-sheet-rb/main.tex @@ -16,12 +16,16 @@ \section{Differential Equations} \input{parts/02_diffeq.tex} +\newpage +\section{Solutions to Differential Equations} +\input{parts/03_diffeq_sol.tex} + \newpage \section{Continuous functions in $\R^n$} -\input{parts/03_cont.tex} +\input{parts/04_cont.tex} \newpage \section{Differential Calculus in $\R^n$} -\input{parts/04_diff.tex} +\input{parts/05_diff.tex} \end{document} diff --git a/semester3/analysis-ii/cheat-sheet-rb/parts/02_diffeq.tex b/semester3/analysis-ii/cheat-sheet-rb/parts/02_diffeq.tex index 2f4abbc..f5a9628 100644 --- a/semester3/analysis-ii/cheat-sheet-rb/parts/02_diffeq.tex +++ b/semester3/analysis-ii/cheat-sheet-rb/parts/02_diffeq.tex @@ -83,139 +83,4 @@ $\S_b(F) := \{ f + f_0 \sep f \in \S(F),\ f_0 \text{ is a particular sol.} \}$\\ \remark \textbf{Applications of Linearity}\\ If $f_1$ solves $F$ for $b_1$, and $f_2$ for $b_2$: $f_1 + f_2$ solves $b_1 + b_2$. \\ -Follows from: $D(f_1) + D(f_2) = b_1 + b_2$. - -\newpage -\subsection{Linear Solutions: First Order} -\subtext{ $I \subset \R, \quad a,b: I \to \R$ } - -\textbf{Form:} -$$ y' + ay = b $$ -\textbf{Approach:} -\begin{enumerate} - \item Hom. Solution $f_1$ for: $y' + ay = 0$\\ - \subtext{Note that $\S$ has $\dim(\S) = 1$, so $f_1 \neq 0$ is a Basis for $\S$} - \item Part. Solution $f_0$ for $y' + ay = b$ -\end{enumerate} -\textbf{Solutions:} $ f_0 + zf_1 \quad \text{ for } z \in \C $ - -\begin{subbox}{Explicit Homogeneous Solution} - \smalltext{$A(x)$ is a primitive of $a$, $f(x_0) = y_0$} - \begin{align*} - f_1(x) &= z \cdot \exp(-A(x)) \\ - f_1(x) &= y_0 \cdot \exp(A(x_0) - a(x)) - \end{align*} -\end{subbox} - -Variation of Constants: Treating $z$ as $z(x)$ yields: - -\begin{subbox}{Explicit Inhomogeneous Solution} - \smalltext{$A(x)$ is a primitive of $a$} - $$ - f_0(x) = \underbrace{\left(\int b(x)\cdot\exp(A(x)) \right)}_{z(x)} \cdot \exp\left(-A(x)\right) - $$ -\end{subbox} - -\method \textbf{Educated Guess}\\ -Usually, $y$ has a similar form to $b$: - -\begin{tabular}{ll} - \hline - $b(x)$ & \text{Guess} \\ - \hline - $a \cdot e^{\alpha x}$ & $b \cdot e^{\alpha x}$ \\ - $a \cdot \sin(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\ - $b \cdot \cos(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\ - $ae^{\alpha x} \cdot \sin(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\ - $be^{\alpha x} \cdot \cos(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\ - $P_n(x) \cdot e^{\alpha x}$ & $R_n(x) \cdot e^{\alpha x}$\\ - $P_n(x) \cdot e^{\alpha x}\sin(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\ - $P_n(x) \cdot e^{\alpha x}\cos(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\ - \hline -\end{tabular} - -\remark If $\alpha, \beta$ are roots of $P(X)$ with multiplicity $j$, multiply guess with a $P_j(x)$. - -\subsection{Linear Solutions: Constant Coefficients} -\textbf{Form:} -$$ - y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b -$$ -\subtext{Where $a_0, \ldots, a_{k-1} \in \C$ are constants, $b(x)$ is continuous.} - -\subsubsection{Homogeneous Equations} - -The idea is to find a Basis of $\S$: - -\definition \textbf{Characteristic Polynomial} $P(X) = \prod_{i=1}^{k} (X-\alpha_i)$ - -\remark The unique roots $\alpha_1,\ldots,\alpha_l$ form a Basis: -$$ - \text{span}(\S) = \{ x^je^{\alpha_i x} \sep i \leq l,\quad 0 \leq j \leq v_i \} -$$ -\subtext{$v_1,\ldots,v_k$ are the Multiplicities of $\alpha_1,\ldots,\alpha_k$} - -\remark If $\alpha_j = \beta + \gamma i \in \C$ is a root, $\bar{\alpha_j} = \beta - \gamma i$ is too.\\ -To get a real-valued solution, apply: -$$ -e^{\alpha_j x} = e^{\beta x}\left( \cos(\gamma x) + i \sin(\gamma x) \right) -$$ - -\begin{subbox}{Explicit Homogeneous Solution} - \smalltext{Using $\alpha_1,\ldots,\alpha_k$ from $P(X)$ s.t. $\alpha_i \neq \alpha_j$, $z_i \in \C$ arbitrary} - $$ - f(x) = \prod_{i=1}^{k} z_i \cdot e^{\alpha_i x} \quad\text{with}\quad f^{(j)(x)} = \prod_{i=1}^{k} z_i \cdot \alpha_i^j e^{\alpha_i x} - $$ - \smalltext{Multiple roots: same scheme, using the basis vectors of $\S$} -\end{subbox} -\subtext{Solutions exist $\forall Z = (z_1,\ldots,z_k)$ since that system's $\det(M_Z) \neq 0$.} - -\newpage -\subsubsection{Inhomogeneous Equations} - -\method \textbf{Undetermined Coefficients}: An educated guess. -\begin{enumerate} - \item $b(x) = cx^d \cdot e^{\alpha x} \implies f_p(x) = Q(x)e^{\alpha x}$\\ - \subtext{$\deg(Q) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$} - \item $\begin{rcases*} - b(x) = cx^d \cdot \cos(\alpha x) \\ - b(x) = cx^d \cdot \sin(\alpha x) - \end{rcases*} f_p = Q_1(x)\cos(\alpha x) + Q_2(x)\sin(\alpha x)$ - \subtext{$\deg(Q_{1,2}) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$} -\end{enumerate} - -\remark \textbf{Applying Linearity}\\ -If $b(x) = \sum_{i=1}^{n} b_i(x)$, A solution for $b(x)$ is $f(x) = \sum_{i=1}^{n} f_i(x)$\\ -\subtext{Sometimes called \textit{Superposition Principle} in this context} - -\subsection{Other Methods} - -\method \textbf{Change of Variable}\\ -If $f(x)$ is replaced by $h(y) = f(g(y))$, then $h$ is a sol. too.\\ -\subtext{Changes like $h(t) = f(e^t)$ may lead to useful properties.} - -\begin{subbox}{Separation of Variables} - Form: - $$ - y' = a(y)\cdot b(x) - $$ - Solve using: - $$ - \int \frac{1}{a(y)}\ \text{d}y = \int b(x) \dx + c - $$ -\end{subbox} -\subtext{Usually $\int 1/a(y)\ \text{d}y$ can be solved directly for $\ln|a(y)|+c$.} - -\subsection{Method Overview} - -\begin{center} - \begin{tabular}{l|l} - \textbf{Method} & \textbf{Use case} \\ - \hline - Variation of constants & LDE with $\ord(F)=1$ \\ - Characteristic Polynomial & Hom. LDE w/ const. coeff. \\ - Undetermined Coefficients & Inhom. LDE w/ const. coeff. \\ - Separation of Variables & ODE s.t. $y' = a(y)\cdot b(x)$ \\ - Change of Variables & e.g. $y' = f(ax + by + c)$ \\ - \end{tabular} -\end{center} \ No newline at end of file +Follows from: $D(f_1) + D(f_2) = b_1 + b_2$. \ No newline at end of file diff --git a/semester3/analysis-ii/cheat-sheet-rb/parts/03_diffeq_sol.tex b/semester3/analysis-ii/cheat-sheet-rb/parts/03_diffeq_sol.tex new file mode 100644 index 0000000..b66a881 --- /dev/null +++ b/semester3/analysis-ii/cheat-sheet-rb/parts/03_diffeq_sol.tex @@ -0,0 +1,133 @@ + + +\subsection{Linear Solutions: First Order} +\textbf{Form:}$\quad y' + ay = b\quad $ \subtext{ $I \subset \R, \quad a,b: I \to \R$ } + +\textbf{Approach:} +\begin{enumerate} + \item Hom. Solution $f_1$ for: $y' + ay = 0$\\ + \subtext{Note that $\S$ has $\dim(\S) = 1$, so $f_1 \neq 0$ is a Basis for $\S$} + \item Part. Solution $f_0$ for $y' + ay = b$ +\end{enumerate} +\textbf{Solutions:} $ f_0 + zf_1 \quad \text{ for } z \in \C $ + +\begin{subbox}{Explicit Homogeneous Solution} + \smalltext{$A(x)$ is a primitive of $a$, $f(x_0) = y_0$} + \begin{align*} + f_1(x) &= z \cdot \exp(-A(x)) \\ + f_1(x) &= y_0 \cdot \exp(A(x_0) - a(x)) + \end{align*} +\end{subbox} + +\method \textbf{Variation of Constants}: Treating $z$ as $z(x)$ yields: + +\begin{subbox}{Explicit Inhomogeneous Solution} + \smalltext{$A(x)$ is a primitive of $a$} + $$ + f_0(x) = \underbrace{\left(\int b(x)\cdot\exp(A(x)) \right)}_{z(x)} \cdot \exp\left(-A(x)\right) + $$ +\end{subbox} + +\method \textbf{Educated Guess}\\ +Usually, $y$ has a similar form to $b$: + +\begin{tabular}{ll} + \hline + $b(x)$ & \text{Guess} \\ + \hline + $a \cdot e^{\alpha x}$ & $b \cdot e^{\alpha x}$ \\ + $a \cdot \sin(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\ + $b \cdot \cos(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\ + $ae^{\alpha x} \cdot \sin(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\ + $be^{\alpha x} \cdot \cos(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\ + $P_n(x) \cdot e^{\alpha x}$ & $R_n(x) \cdot e^{\alpha x}$\\ + $P_n(x) \cdot e^{\alpha x}\sin(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\ + $P_n(x) \cdot e^{\alpha x}\cos(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\ + \hline +\end{tabular} + +\remark If $\alpha, \beta$ are roots of $P(X)$ with multiplicity $j$, multiply guess with a $P_j(x)$. + +\subsection{Linear Solutions: Constant Coefficients} +\textbf{Form:} +$$ + y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b +$$ +\subtext{Where $a_0, \ldots, a_{k-1} \in \C$ are constants, $b(x)$ is continuous.} + +\subsubsection{Homogeneous Equations} + +The idea is to find a Basis of $\S$: + +\definition \textbf{Characteristic Polynomial} $P(X) = \prod_{i=1}^{k} (X-\alpha_i)$ + +\remark The unique roots $\alpha_1,\ldots,\alpha_l$ form a Basis: +$$ + \text{span}(\S) = \{ x^je^{\alpha_i x} \sep i \leq l,\quad 0 \leq j \leq v_i \} +$$ +\subtext{$v_1,\ldots,v_k$ are the Multiplicities of $\alpha_1,\ldots,\alpha_k$} + +\remark If $\alpha_j = \beta + \gamma i \in \C$ is a root, $\bar{\alpha_j} = \beta - \gamma i$ is too.\\ +To get a real-valued solution, apply: +$$ +e^{\alpha_j x} = e^{\beta x}\left( \cos(\gamma x) + i \sin(\gamma x) \right) +$$ + +\begin{subbox}{Explicit Homogeneous Solution} + \smalltext{Using $\alpha_1,\ldots,\alpha_k$ from $P(X)$ s.t. $\alpha_i \neq \alpha_j$, $z_i \in \C$ arbitrary} + $$ + f(x) = \prod_{i=1}^{k} z_i \cdot e^{\alpha_i x} \quad\text{with}\quad f^{(j)(x)} = \prod_{i=1}^{k} z_i \cdot \alpha_i^j e^{\alpha_i x} + $$ + \smalltext{Multiple roots: same scheme, using the basis vectors of $\S$} +\end{subbox} +\subtext{Solutions exist $\forall Z = (z_1,\ldots,z_k)$ since that system's $\det(M_Z) \neq 0$.} + +\newpage +\subsubsection{Inhomogeneous Equations} + +\method \textbf{Undetermined Coefficients}: An educated guess. +\begin{enumerate} + \item $b(x) = cx^d \cdot e^{\alpha x} \implies f_p(x) = Q(x)e^{\alpha x}$\\ + \subtext{$\deg(Q) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$} + \item $\begin{rcases*} + b(x) = cx^d \cdot \cos(\alpha x) \\ + b(x) = cx^d \cdot \sin(\alpha x) + \end{rcases*} f_p = Q_1(x)\cos(\alpha x) + Q_2(x)\sin(\alpha x)$ + \subtext{$\deg(Q_{1,2}) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$} +\end{enumerate} + +\remark \textbf{Applying Linearity}\\ +If $b(x) = \sum_{i=1}^{n} b_i(x)$, A solution for $b(x)$ is $f(x) = \sum_{i=1}^{n} f_i(x)$\\ +\subtext{Sometimes called \textit{Superposition Principle} in this context} + +\subsection{Other Methods} + +\method \textbf{Change of Variable}\\ +If $f(x)$ is replaced by $h(y) = f(g(y))$, then $h$ is a sol. too.\\ +\subtext{Changes like $h(t) = f(e^t)$ may lead to useful properties.} + +\begin{subbox}{Separation of Variables} + Form: + $$ + y' = a(y)\cdot b(x) + $$ + Solve using: + $$ + \int \frac{1}{a(y)}\ \text{d}y = \int b(x) \dx + c + $$ +\end{subbox} +\subtext{Usually $\int 1/a(y)\ \text{d}y$ can be solved directly for $\ln|a(y)|+c$.} + +\subsection{Method Overview} + +\begin{center} + \begin{tabular}{l|l} + \textbf{Method} & \textbf{Use case} \\ + \hline + Variation of constants & LDE with $\ord(F)=1$ \\ + Characteristic Polynomial & Hom. LDE w/ const. coeff. \\ + Undetermined Coefficients & Inhom. LDE w/ const. coeff. \\ + Separation of Variables & ODE s.t. $y' = a(y)\cdot b(x)$ \\ + Change of Variables & e.g. $y' = f(ax + by + c)$ \\ + \end{tabular} +\end{center} \ No newline at end of file diff --git a/semester3/analysis-ii/cheat-sheet-rb/parts/03_cont.tex b/semester3/analysis-ii/cheat-sheet-rb/parts/04_cont.tex similarity index 100% rename from semester3/analysis-ii/cheat-sheet-rb/parts/03_cont.tex rename to semester3/analysis-ii/cheat-sheet-rb/parts/04_cont.tex diff --git a/semester3/analysis-ii/cheat-sheet-rb/parts/04_diff.tex b/semester3/analysis-ii/cheat-sheet-rb/parts/05_diff.tex similarity index 97% rename from semester3/analysis-ii/cheat-sheet-rb/parts/04_diff.tex rename to semester3/analysis-ii/cheat-sheet-rb/parts/05_diff.tex index 5793715..5f633ae 100644 --- a/semester3/analysis-ii/cheat-sheet-rb/parts/04_diff.tex +++ b/semester3/analysis-ii/cheat-sheet-rb/parts/05_diff.tex @@ -50,7 +50,7 @@ $\\ Partial derivatives don't provide a good approx. of $f$, unlike in the $1$-dimensional case. The \textit{differential} is a linear map which replicates this purpose in $\R^n$. } -\begin{subbox}{Differentiability in $\R^n$} +\begin{subbox}{Differentiability in $\R^n$ \& the Differential} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad u: \R^n \to \R^m \text{ linear map}$} $$ df(x_0) := u