mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-11 07:28:26 +00:00
[Analysis] Diff. Calc
This commit is contained in:
Binary file not shown.
@@ -2,6 +2,8 @@ Relevant definitions used throughout Analysis II.
|
||||
|
||||
\subtext{$\textbf{A} \in \R^{m \times n},\quad x,y \in \R^n,\quad \alpha \in \R$}
|
||||
|
||||
\definition \textbf{Scalar Product} $x \cdot y :=\sum_{i=0}^{n} (x_i \cdot y_i)$
|
||||
|
||||
\definition \textbf{Euclidian Norm} $||x|| := \displaystyle\sqrt{\sum_{i=1}^{n} x_i^2}$\\
|
||||
\subtext{Used to generalize $|x|$ in many Analysis I definitions}
|
||||
|
||||
|
||||
@@ -39,7 +39,10 @@ $\\
|
||||
\vdots \\
|
||||
\partial x_n f(x_0)
|
||||
\end{bmatrix} = \textbf{J}_f(x)^\top$\\
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R$}
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R$, i.e. \textit{must} map to $1$ dimension}
|
||||
|
||||
\remark $\nabla f$ points in the direction of greatest increase.
|
||||
\subtext{This generalizes that in $\R$, $\text{sgn}(f)$ shows if $f$ increases/decreases}
|
||||
|
||||
\definition \textbf{Divergence} $\text{div}(f)(x_0) := \text{Tr}\bigr(\textbf{J}_f(x_0)\bigl)$\\
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad \textbf{J}_f \text{ exists}$}
|
||||
@@ -60,3 +63,136 @@ $\\
|
||||
\underset{x \neq x_0 \to x_0}{\lim} \frac{1}{\big\| x - x_0 \big\|}\Biggl( f(x) - f(x_0) - u(x - x_0) \Biggr) = 0
|
||||
$$
|
||||
\end{subbox}
|
||||
\subtext{Similarly, $f$ is differentiable if this holds for all $x \in X$}
|
||||
|
||||
\lemma \textbf{Properties of Differentiable Functions}
|
||||
|
||||
$
|
||||
\begin{array}{ll}
|
||||
(i) & \text{Continuous on } X \\
|
||||
(ii) & \forall i \leq m, j \leq n:\quad \partial_{x_j}f_i \text{ exists} \\
|
||||
(iii) & m=1:\quad \partial_{x_i} f(x_0) = a_i \\
|
||||
& \text{for:}\quad u(x_1,\ldots,x_n) = a_1x_1 + \cdots + a_nx_n
|
||||
\end{array}
|
||||
$
|
||||
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ differentiable on } X$}
|
||||
|
||||
\lemma \textbf{Preservation of Differentiability}
|
||||
|
||||
$
|
||||
\begin{array}{ll}
|
||||
(i) & f + g \text{ is differentiable: } d(f+g)=df+dg \\
|
||||
(ii) & fg \text{ is differentiable, if } m=1 \\
|
||||
(iii) & \displaystyle\frac{f}{g}\ \text{ is differentiable, if } m=1,\ g(x) \neq 0\ \forall x \in X
|
||||
\end{array}
|
||||
$
|
||||
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f,g: X \to \R^m \text{ differentiable on }X$}
|
||||
|
||||
\lemma \textbf{Cont. Partial Derivatives imply Differentiability}
|
||||
|
||||
if all $\partial_{x_j} f_i$ exist and are continuous:
|
||||
$$
|
||||
f \text{ differentiable on } X,\quad df(x_0) = \textbf{J}_f(x_0)
|
||||
$$
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m$}
|
||||
|
||||
\lemma \textbf{Chain Rule} $\quad g \circ f \text{ is differentiable on } X$
|
||||
\begin{align*}
|
||||
& d(g \circ f)(x_0) &= dg\bigl( f(x_0) \bigr) \circ df(x_0) \\
|
||||
& \textbf{J}_{g \circ f}(x_0) &= \textbf{J}_g\bigl( f(x_0) \bigr) \cdot \textbf{J}_f(x_0)
|
||||
\end{align*}
|
||||
\subtext{$X \subset \R^n \text{ open},\quad Y \subset \R^m \text{ open},\quad f: X \to Y, g: Y \to \R^p, f,g \text{ diff.-able}$}
|
||||
|
||||
\definition \textbf{Tangent Space}
|
||||
$$
|
||||
T_f(x_0) := \Bigl\{ (x,y) \in \R^n \times \R^m \sep y = f(x_0) + u(x-x_0) \Bigr\}
|
||||
$$
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ diff.-able},\quad x_0 \in X,\quad u = df(x_0)$}
|
||||
|
||||
\definition \textbf{Directional Derivative}
|
||||
$$
|
||||
D_v f(x_0) = \underset{t \neq 0 \to 0}{\lim} \frac{f(x_0 + tv) - f(x_0)}{t}
|
||||
$$
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m,\quad v \neq 0 \in \R^n,\quad x_0 \in X$}
|
||||
|
||||
\lemma \textbf{Directional Derivatives for Diff.-able Functions}
|
||||
$$
|
||||
D_vf(x_0) = df(x_0)(v) = \textbf{J}_f(x_0) \cdot v
|
||||
$$
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ diff.-able},\quad v \neq 0 \in \R^n,\quad x_0 \in X$}
|
||||
|
||||
\remark $D_vf$ is linear w.r.t $v$, so: $D_{v_1 + v_2}f = D_{v_1}f + D_{v_2}f$
|
||||
|
||||
\remark $D_vf(x_0) = \nabla f(x_0) \cdot v = \big\| \nabla f(x_0) \big\| \cos(\theta)$\\
|
||||
\subtext{In the case $f: X \to \R$, where $\theta$ is the angle between $v$ and $\nabla f(x_0)$}
|
||||
|
||||
\newpage
|
||||
\subsection{Higher Derivatives}
|
||||
|
||||
\definition \textbf{Differentiability Classes}
|
||||
\begin{align*}
|
||||
& f \in C^1(X;\R^m) &\iffdef& f \text{ diff.-able on } X, \text{ all } \partial_{x_j} f_i \text{ exist} \\
|
||||
& f \in C^k(X;\R^m) &\iffdef& f \text{ diff.-able on } X, \text{ all } \partial_{x_j} f_i \in C^{k-1} \\
|
||||
& f \in C^\infty(X;\R^m) &\iffdef& f \in C^k(X;\R^m)\ \forall k \geq 1
|
||||
\end{align*}
|
||||
\subtext{$X \subset \R^n \text{ open},\quad f:X\to\R^m$}
|
||||
|
||||
\lemma Polynomials, Trig. functions and $\exp$ are in $C^\infty$
|
||||
|
||||
\lemma \textbf{Operations preserve Differentiability Classes}
|
||||
|
||||
$
|
||||
\begin{array}{lcll}
|
||||
(i) & f + g & \in C^k \\
|
||||
(ii) & fg & \in C^k & \text{ if } m=1 \\
|
||||
(iii) & \displaystyle\frac{f}{g} & \in C^k & \text{ if } m=1, g(x) \neq 0\ \forall x \in X
|
||||
\end{array}
|
||||
$\\
|
||||
\subtext{$f,g \in C^k$}
|
||||
|
||||
\lemma \textbf{Composition preserves Differentiability Classes}
|
||||
$$
|
||||
g \circ f \in C^k
|
||||
$$
|
||||
\subtext{$f \in C^k,\quad f(X) \subset Y,\quad Y \subset \R^m \text{ open},\quad g: Y \to \R^p,\quad g \in C^k$}
|
||||
|
||||
\begin{subbox}{Partial Derivatives commute in $C^k$}
|
||||
\smalltext{$k \geq 2,\quad X \subset \R^n \text{ open},\quad f: X \to \R^m,\quad f \in C^k$}
|
||||
$$
|
||||
\forall x,y:\quad \partial_{x,y}f = \partial_{y,x}f
|
||||
$$
|
||||
\smalltext{This generalizes for $\partial_{x_1,\ldots,x_n}f$.}
|
||||
\end{subbox}
|
||||
|
||||
\remark Linearity of Partial Derivatives
|
||||
$$
|
||||
\partial_x^m(af_1 + bf_2) = a\partial_x^mf_1 + b\partial_x^mf_2
|
||||
$$
|
||||
\subtext{Assuming both $\partial_x f_{1,2}$ exist.}
|
||||
|
||||
\definition \textbf{Laplace Operator}
|
||||
$$
|
||||
\Delta f := \text{div}\bigl( \nabla f(x) \bigr) = \sum_{i=0}^{n} \frac{\partial}{\partial x_i}\Bigl( \frac{\partial f}{\partial x_i} \Bigr) = \sum_{i=0}^{n} \frac{\partial^2f}{\partial x_i^2}
|
||||
$$
|
||||
|
||||
\begin{subbox}{The Hessian}
|
||||
\smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad f \in C^2,\quad x_0 \in X$}
|
||||
$$
|
||||
\textbf{H}_f(x) := \begin{bmatrix}
|
||||
\partial_{1,1}f(x_0) & \partial_{2,1}f(x_0) & \cdots & \partial_{n,1}f(x_0) \\
|
||||
\partial_{1,2}f(x_0) & \partial_{2,2}f(x_0) & \cdots & \partial_{n,2}f(x_0) \\
|
||||
\vdots & \vdots & \ddots & \vdots \\
|
||||
\partial_{1,n}f(x_0) & \partial_{2,n}f(x_0) & \cdots & \partial_{n,n}f(x_0)
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Where $\bigl( \textbf{H}_f(x) \bigr)_{i,j} = \partial_{x_i,x_j}f(x)$
|
||||
\end{subbox}
|
||||
\subtext{Note that $f: X \to \R$, i.e. $\textbf{H}_f$ only exists for $1$-dimensionally valued $f$}
|
||||
|
||||
\notation $\textbf{H}_f(x) = \text{Hess}_f(x) = \nabla^2f(x)$
|
||||
|
||||
\remark $\textbf{H}_f(x_0)$ is symmetric: $\bigl( \textbf{H}_f(x_0) \bigr)_{i,j} = \bigl( \textbf{H}_f(x_0) \bigr)_{j, i}$
|
||||
|
||||
\subsection{Change of Variable}
|
||||
Reference in New Issue
Block a user