[Analysis] Diff. Calc.

This commit is contained in:
RobinB27
2026-01-05 15:23:03 +01:00
parent 8e89301a0a
commit 4ab99ae887
7 changed files with 174 additions and 7 deletions

View File

@@ -27,5 +27,9 @@
\newpage \newpage
\section{Differential Calculus in $\R^n$} \section{Differential Calculus in $\R^n$}
\input{parts/05_diff.tex} \input{parts/05_diff.tex}
\newpage
\section{Integral Calculus in $\R^n$}
\input{parts/06_int.tex}
\end{document} \end{document}

View File

@@ -19,4 +19,15 @@ Relevant definitions used throughout Analysis II.
$ $
\end{center} \end{center}
\definition \textbf{Definiteness}
\begin{center}
$
\begin{array}{lcl}
\text{Positive Definite} &\iffdef& x^\top \textbf{A} x > 0\ \forall x \in \R^n_{\neq 0} \\
\text{Negative Definite} &\iffdef& x^\top \textbf{A} x < 0\ \forall x \in \R^n_{\neq 0}
\end{array}
$
\end{center}
\smalltext{If $0$ is allowed, $\textbf{A}$ is called positive/negative semi-definite.}
\definition \textbf{Trace} $\text{Tr}(\textbf{A}) := \displaystyle\sum_{i=0}^{\text{min}(m,n)} \textbf{A}_{i, i}$ \definition \textbf{Trace} $\text{Tr}(\textbf{A}) := \displaystyle\sum_{i=0}^{\text{min}(m,n)} \textbf{A}_{i, i}$

View File

@@ -195,4 +195,151 @@ $$
\remark $\textbf{H}_f(x_0)$ is symmetric: $\bigl( \textbf{H}_f(x_0) \bigr)_{i,j} = \bigl( \textbf{H}_f(x_0) \bigr)_{j, i}$ \remark $\textbf{H}_f(x_0)$ is symmetric: $\bigl( \textbf{H}_f(x_0) \bigr)_{i,j} = \bigl( \textbf{H}_f(x_0) \bigr)_{j, i}$
\subsection{Change of Variable} \definition \textbf{Polar Coordinates}
\begin{align*}
g(r,\theta) &= \bigl(r \cos(\theta), r \sin(\theta)\bigr) \\
\textbf{J}_g(r,\theta) &= \begin{bmatrix}
\cos(\theta) & -r \sin(\theta) \\
\sin(\theta) & r \cos(\theta) \\
\end{bmatrix} \\
\partial_xf &= \cos(\theta)\partial_rf-\frac{1}{r}\sin(\theta)\partial_\theta f \\
\partial_yf &= \sin(\theta)\partial_rf+\frac{1}{r}\cos(\theta)\partial_\theta f
\end{align*}
\subtext{$(r,\theta) \in (0,+\infty) \times \R,\quad \det(\textbf{J}_g) = r$}
\subsection{Taylor Polynomials}
% Full definition of taylor poly
% \begin{subbox}{Taylor Polynomials}
% \smalltext{$k \geq 1,\quad f: X \to \R,\quad f \in C^k,\quad x_0 \in X$}
% \begin{align*}
% & T_kf(y;x_0) := f(x_0) + \sum_{i=0}^{n}\frac{\partial f}{\partial x_i}(x_0)y_i + \cdots \\
% & + \sum_{m_1 + \cdots + m_n}^{}\frac{1}{m_1!\cdots m_n!}\frac{\partial^kf}{\partial x_1^{m1} \cdots \partial x_n^{m_n}}(x_0)y_1^{m_1}\cdots y_n^{m_n}
% \end{align*}
% \smalltext{Where the last sum ranges over $n$-tuples in $\Z_{\geq 0}$ that sum to $k$}
% \end{subbox}
\begin{multicols}{2}
\definition $|m| := \sum_{i=1}^{n} m_1$
\definition $m! := m_1!\cdots m_n!$
\definition $y^m := y_1^m\cdots y_n^m$
\end{multicols}
\subtext{for $m = (m_1,\ldots,m_n),\quad y = (y_1,\ldots,y_n)$}
\begin{subbox}{Taylor Polynomials}
\smalltext{$k \geq 1,\quad f: X \to \R,\quad f \in C^k,\quad x_0 \in X$}
$$
T_kf(y;x_0) := \sum_{|m| \leq k}^{}\frac{1}{m!}\partial_x^m f(x_0)y^m
$$
\end{subbox}
\lemma \textbf{Taylor Approximation}
$$
\underset{x \neq x_0 \to x_0}{\lim}\frac{E_kf(x;x_0)}{\big\|x-x_0\big\|^k} = 0
$$
\smalltext{Where $f(x) = T_kf(x-x_0;x_0) + E_kf(x;x_0)$}\\
\subtext{$k \geq 1,\quad X \subset \R^n \text{ open},\quad f: X \to \R,\quad f \in C^k,\quad x_0 \in X$}
\remark Taylor polynomials of degree $1,2$:
\begin{align*}
& T_1f(y;x_0) = f(x_0) + \nabla f(x_0)\cdot y \\
& T_2f(y;x_0) = f(x_0) + \nabla f(x_0) \cdot y + \frac{1}{2} \Bigl( x_0^\top \cdot \textbf{H}_f(y) \cdot x_0\Bigr)
\end{align*}
\method Calculating $T_kf(y;x_0)$ also yields $\textbf{H}_f$ for $k \geq 2$.
\begin{align*}
& T_2f((x_0,y_0);(x,y)) = \ldots + ax^2 + by^2 + cxy \\
& \implies \textbf{H}_f(x_0,y_0) = \begin{bmatrix}
2a & c \\
c & 2b
\end{bmatrix}
\end{align*}
\method Taylor Polynomials can be found by combination.
\begin{footnotesize}
\textbf{Example:} $f(x,y) = \underbrace{e^{y^4}}_\text{1} + \underbrace{\sin(xy)}_\text{2} + \underbrace{2xy^2}_\text{3} - \underbrace{\ln(x^2+1)}_\text{4},\quad k = 3$
\begin{enumerate}
\item $e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \implies e^{y^4} \approx 1 + y^4 + \frac{y^8}{2} + \frac{y^12}{6}$\\
\color{gray} Since $k=3$, discarding all terms with $\deg > 3$ yields: $e^{y^3} \approx 1$ \color{black}
\item $\sin(x) \approx x - \frac{x^3}{6} \implies \sin(xy) \approx xy$
\item $2xy^2 \approx 2xy^2\quad$ \color{gray}(Since it's already a polynomial, $\deg = 3$)\color{black}
\item $\ln(x+1) \approx x - \frac{x^2}{2} + \frac{x^3}{3} \implies \ln(x^2 + 1) \approx x^2$
\end{enumerate}
Thus: $f(x) \approx 1 + xy + 2xy^2 - x^2 = T_3f\Bigl((0,0);(x,y)\Bigr)$
\end{footnotesize}
\newpage
\subsection{Critical Points}
\lemma \textbf{Local Maxima \& Minima}
$$
\begin{rcases*}
f(y) \leq f(x_0)\ \forall y \text{ close} \\
f(y) \geq f(x_0)\ \forall y \text{ close}
\end{rcases*}\quad \frac{\partial f}{\partial x_i}(x_0) = 0\ \ \forall i \leq n
$$
\subtext{In other words: $df(x_0) = \nabla f(x_0) = 0$}\\
\subtext{$f: X \to \R,\quad X \subset \R^n \text{ open}, f \text{ diff.-able}$}
\definition \textbf{Critical Point}\\
$$
x_0 \in X \text{ is critical } \iffdef \nabla f(x_0) = 0
$$
\subtext{$X \subset \R^n \text{ open}, f: X \to \R \text{ diff.-able}$}
\remark \textbf{Existance of Maxima/Minima}\\
Don't \textit{have to} exist if $X$ is open, only if $X$ is compact.\\
\subtext{However, for compact sets, the lemma above no longer applies.}
\method \textbf{Critical points on Compact Sets}\\
Decompose $X = X' \cup B$, s.t. $X'$ is open, $B$ is a \textit{boundary}.
\begin{enumerate}
\item Find critical points in $X'$
\item Check if any $x \in B$ is a maximum/minimum
\end{enumerate}
\definition \textbf{Non-degenerate Critical Point}
$$
x_0 \in X \text{ non-deg.} \iffdef \det\Bigl(\textbf{H}_f(x_0)\Bigr) \neq 0
$$
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad f \in C^2,\quad x_0 \in X \text{ is critical}$}
\lemma \textbf{Definiteness of the Hessian}
\begin{align*}
&\textbf{H}_f(x_0) \text{ positive definite} &\implies x_0 \text{ is a local min.} \\
&\textbf{H}_f(x_0) \text{ negative definite} &\implies x_0 \text{ is a local max.} \\
&\textbf{H}_f(x_0) \text{ indefinite} &\implies x_0 \text{ is a saddle point.}
\end{align*}
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad f \in C^2,\quad x_0 \in X \text{ non-deg. critical}$}
% The nice tikz code below is a tightened version of code from Janis Hutz' Summary.
\method \textbf{Determining Definiteness for $2 \times 2$ Matrices}
\begin{center}
\begin{tikzpicture}[node distance = 1cm and 0.4cm, >={Stealth[round]}]
\node (det) {$\det(A)$};
\node (indef) [below=of det] {indefinite};
\node (tr0) [right=of det] {$\text{Tr}(A)$};
\node (posdef) [above right=of tr0, yshift=-0.5cm] {pos. def.};
\node (negdef) [below right=of tr0, yshift=+0.5cm] {neg. def.};
\node (tr1) [left=of det] {$\text{Tr}(A)$};
\node (possemdef) [above left=of tr1, yshift=-0.5cm] {p. semi-def.};
\node (negsemdef) [below left=of tr1, yshift=+0.5cm] {n. semi-def.};
\node (zero) [below=of tr1] {$A$ is zero};
\path[->]
% Level 0
(det) edge node [above] {pos.} (tr0)
(det) edge node [above] {$0$} (tr1)
(det) edge node [right] {neg.} (indef)
(tr0) edge node [left] {pos.} (posdef)
(tr0) edge node [left] {neg.} (negdef)
(tr1) edge node [right] {pos.} (possemdef)
(tr1) edge node [right] {neg.} (negsemdef)
(tr1) edge node [right] {$0$} (zero);
\end{tikzpicture}
\end{center}

View File

@@ -43,10 +43,16 @@
\def \lims{\limsup\limits_{n \to \infty}} \def \lims{\limsup\limits_{n \to \infty}}
\def \ord{\text{ord}} \def \ord{\text{ord}}
\def \tr{\text{Tr}}
\def \sep{\ |\ } \def \sep{\ |\ }
\def \iffdef{\overset{\text{def}}{\iff}} \def \iffdef{\overset{\text{def}}{\iff}}
\def \dfd#1{\frac{\partial f}{\partial x_#1}}
\def \sdfd#1{\partial_{x_#1}f}
\def \ssdfd#1{\partial_#1f}
\def \dd#1#2{\frac{\partial_#1}{\partial x_#2}} % to replace f
% Titles % Titles
\def \definition{\colorbox{lightgray}{Def} } \def \definition{\colorbox{lightgray}{Def} }
\def \notation{\colorbox{lightgray}{Notation} } \def \notation{\colorbox{lightgray}{Notation} }
@@ -55,11 +61,6 @@
\def \lemma{\colorbox{lightgray}{Lem.} } \def \lemma{\colorbox{lightgray}{Lem.} }
\def \method{\colorbox{lightgray}{Method} } \def \method{\colorbox{lightgray}{Method} }
% partial derivatives
\def \dfd#1{\frac{\partial f}{\partial x_#1}}
\def \sdfd#1{\partial_{x_#1}f}
\def \ssdfd#1{\partial_#1f}
\def \dd#1#2{\frac{\partial_#1}{\partial x_#2}} % to replace f
% For intuiton and less important notes % For intuiton and less important notes
\def \subtext#1{ \def \subtext#1{

View File

@@ -34,4 +34,8 @@
% Custom resets % Custom resets
\renewcommand{\arraystretch}{1.3} % Decrease row height \renewcommand{\arraystretch}{1.3} % Decrease row height
\renewcommand{\familydefault}{\sfdefault} \renewcommand{\familydefault}{\sfdefault}
% Flexible graphs / visualisations inside latex
\usepackage{tikz}
\usetikzlibrary{positioning, arrows.meta}