diff --git a/semester3/analysis-ii/cheat-sheet-rb/main.pdf b/semester3/analysis-ii/cheat-sheet-rb/main.pdf index 2308e0e..61e92d0 100644 Binary files a/semester3/analysis-ii/cheat-sheet-rb/main.pdf and b/semester3/analysis-ii/cheat-sheet-rb/main.pdf differ diff --git a/semester3/analysis-ii/cheat-sheet-rb/parts/06_int.tex b/semester3/analysis-ii/cheat-sheet-rb/parts/06_int.tex index e69de29..ab5e850 100644 --- a/semester3/analysis-ii/cheat-sheet-rb/parts/06_int.tex +++ b/semester3/analysis-ii/cheat-sheet-rb/parts/06_int.tex @@ -0,0 +1,32 @@ +\subsection{Line Integrals} + +\begin{subbox}{Integrals for $f:I \to \R^n$} + \smalltext{$I = [a,b] \text{ closed \& bounded},\quad f: I \to \R^n \text{ cont.}$} + $$\int_a^b f(t)\ dt = \Biggl( \int_a^b f_1(t)\ dt,\ldots, \int_a^b f_n(t)\ dt \Biggr)$$ +\end{subbox} + +\definition \textbf{Piecewise Continuity}\\ +$\exists k \geq 1$, and a Partition $a = t_0 < \cdots < t_k = b$\\ +s.t. $f_j: [t_{j-1},t_j]\to\R^n$ has $f_j \in C^1$ for all $j \leq k$\\ +\subtext{For $f: I \to \R^n$} + +\definition \textbf{Parametrized Curve} $\gamma: [a,b] \to \R^n$ pw.-cont.\\ +\subtext{Also called \textit{Path} from $\gamma(a)$ to $\gamma(b)$} + +\begin{subbox}{Line Integral} + \smalltext{$\gamma: [a,b] \to \R^n$ is path$,\quad X \subset \R^n$ s.t. $\gamma\bigl([a,b]\bigr) \subset X\\ + f:X\to\R^n \text{ continuous}$} + $$ + \int_\gamma f(s)\cdot\ ds := \int_a^b f\Bigl( \gamma(t) \Bigr) \cdot \gamma'(t)\ dt + $$ +\end{subbox} + +\definition \textbf{Continuous integrals are linear} +$$ + \int_a^b\Bigl( f(t) + g(t) \Bigr)\ dt = \int_a^b f(t)\ dt + \int_a^b g(t)\ dt +$$ +\subtext{$f,g: I \to \R^n \text{ continuous}$} + +\remark $f: X \to \R^n$ is called a \textit{Vector Field}. + +\definition \textbf{Oriented Reparametrization} \ No newline at end of file