mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-11 07:28:26 +00:00
[Analysis] Higher derivatives, change of variable, start taylor polynomial
This commit is contained in:
Binary file not shown.
@@ -1,2 +1,27 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Higher derivatives}
|
||||
\shortdef $f$ is in class $C^1$ if $f$ is differentiable and all its partial derivatives are continuous.
|
||||
$f$ is of class $C^k$ if it is differentiable and each of its partial derivatives are in $C^{k - 1}$.
|
||||
If $f \in C^k(X; \R^m)$ for all $k \geq 1$, then $f \in C^\infty(X; \R^m)$\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\setLabelNumber{all}{4}
|
||||
\compactproposition{Mixed derivatives commute} $\partial_{x, y} f = \partial_{y, x}$, as well as $\partial_{x, y, z} = \partial_{x, z, y} = \ldots$, etc (all mixed derivatives commute)
|
||||
Since we have symmetry, we can use the notation $\partial_{x_1^{m_1}, \ldots, x_n^{m_n}} f = \frac{\partial^k}{\partial x^m} f = D^m f = \partial^m f$,
|
||||
where $m = (m_1, \ldots, m_n)$ and $m_1 + \ldots + m_n = k$.
|
||||
There are ${n + k - 1 \choose k}$ possible values for $m$ and e.g. $(1, 1, 2)$ corresponds to the derivative $\frac{\partial^4 f}{\partial x \partial y \partial^2 z}$\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\stepLabelNumber{all}
|
||||
\shortremark Due to linearity of the partial derivative $\partial_x^m(a f_1 + b f_2) = a \partial_x^m f_1 + b \partial_x^m f_2$\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\stepLabelNumber{all}
|
||||
\compactex{Laplace operator} $f \in C^2(X)$, $\nabla f \in C_1(X; \R^n)$, so
|
||||
$\displaystyle \text{div}(\nabla f) = \sum_{i = 1}^{n} \frac{\partial}{\partial_{x_i}} \left( \frac{\partial f}{\partial_{x_i}} \right)
|
||||
= \sum_{i = 1}^{n} \frac{\partial^2 f}{\partial x^2_i}$ (called \bi{Laplacian}, $\Delta f$)\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\compactdef{Hessian} $f : X \rightarrow \R$ in $C^2$. For $x \in X$, the \bi{Hessian matrix} of $f$ at $x$ is the symmetric square matrix
|
||||
\vspace{-0.75pc}
|
||||
\begin{align*}
|
||||
\text{Hess}_f(x) = (\partial_{x_i, x_j} f)_{1 \leq i, j \leq n} = H_f(x) \mediumhspace (\text{$i$-th row, $j$-th column})
|
||||
\end{align*}
|
||||
|
||||
\drmvspace
|
||||
|
||||
@@ -1,2 +1,5 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Change of variable}
|
||||
The idea is to substitute variables for others that make the equation easier to solve.
|
||||
A common example is to switch to polar coordinates from cartesian coordinates, as already demonstrated with continuity checks
|
||||
% TODO: Add notes from TA notes
|
||||
|
||||
@@ -1,2 +1,24 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Taylor polynomials}
|
||||
\compactdef{Taylor polynomials}
|
||||
Let $f : X \rightarrow \R$ with $f \in C^k(X, \R)$ and $y \in X$. The Taylor-Polynomial of order $k$ of $f$ at $y$ is:
|
||||
\vspace{-0.75pc}
|
||||
\begin{align*}
|
||||
T_k f(y; x - y) = \sum_{|i| \leq k} \frac{\partial_i f(y)(x - y)^i}{i!}
|
||||
\end{align*}
|
||||
|
||||
\drmvspace\rmvspace
|
||||
% TODO: Find out what the \partial_1 notation means (likely TA notes 09)
|
||||
where $i$ is a \textit{multi-index}, so:
|
||||
\drmvspace
|
||||
\begin{multicols}{2}
|
||||
\begin{itemize}[noitemsep]
|
||||
\item $i = (i_1, \ldots, i_n)$ (each $i_j \geq 0$)
|
||||
\item $|i| = i_1 + \ldots + i_n$, $\partial_i = \partial_1^{i_1} \ldots \partial_n^{i_n}$
|
||||
\item $(x - y)^i = (x_1 - y_1)^{i_1} \cdot \ldots \cdot (x_n - y_n)^{i_n}$
|
||||
\item $i! = i_1! \cdot \ldots \cdot i_n!$
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
|
||||
\drmvspace\rmvspace
|
||||
The concept this formula uses is that we iterate through all possible partial derivatives of $f$ and assigns each a multi-index $i$
|
||||
|
||||
Reference in New Issue
Block a user