mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-12 14:18:23 +00:00
[TI] Compact: Fixes
This commit is contained in:
@@ -22,6 +22,9 @@ The following objects are uncountable: $[0, 1]$, $\R$, $\cP(\wordbool)$
|
||||
|
||||
\inlinecorollary $|\text{KodTM}| < |\cP(\wordbool)|$ and thus there exist infinitely many not recursively enumerable languages over $\alphabetbool$
|
||||
|
||||
\setLabelNumber{theorem}{3}
|
||||
\inlinetheorem $L_\text{diag} \notin \cL_{RE}$
|
||||
|
||||
\fhlc{Cyan}{Proof of $L$ (not) recursively enumerable}
|
||||
|
||||
Proving that a language \textit{is} recursively enumerable is as difficult as providing a Turing Machine that accepts it.
|
||||
@@ -43,12 +46,26 @@ In other words, $w_i$ is in $L_\text{diag}$ if and only if $w_i$ is not in $L(M_
|
||||
|
||||
In other, more different, words, $w_i$ being in $L_\text{diag}$ implies (from the definition) that $d_{ii} = 0$, which from its definition implies that $w_i \notin L(M_i)$.
|
||||
|
||||
\setLabelNumber{theorem}{3}
|
||||
\inlinetheorem $L_\text{diag} \notin \cL_{RE}$
|
||||
\drmvspace
|
||||
\proven
|
||||
|
||||
|
||||
Another result (not formally proven in the script, but there is a proof by intimidation) that can come in useful, especially when trying to show $L \notin \cL_{RE}$ is:
|
||||
\rmvspace
|
||||
\begin{align*}
|
||||
L, L^C \in \cL_{RE} \Longleftrightarrow L \in \cL_R
|
||||
\end{align*}
|
||||
|
||||
\drmvspace
|
||||
Additionally, as a reminder, $\cL_{RE} = \{ L(M) \divides M \text{ is a TM} \}$, so to prove that a language $L \notin \cL_{RE}$,
|
||||
we only need to show that there exists no TM $M$, for which $L(M) \in \cL_{RE}$.
|
||||
|
||||
|
||||
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
|
||||
|
||||
\newpage
|
||||
\subsection{Reductions}
|
||||
\label{sec:reductions}
|
||||
This is the start of the topics that are explicitly part of the endterm.
|
||||
@@ -70,7 +87,7 @@ First off, a list of important languages for this and the next section:
|
||||
\item $L_{H, \lambda} = \{ \text{Kod}(M) \divides M \text{ halts on } \lambda \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
|
||||
\end{itemize}
|
||||
|
||||
\newpage
|
||||
|
||||
\setLabelNumber{definition}{3}
|
||||
\fancydef{Recursively reducible languages} $L_1 \leq_R L_2$ ($L_1$ reducible into $L_2$), if $L_2 \in \cL_R \Rightarrow L_1 \in \cL_R$
|
||||
|
||||
@@ -138,7 +155,6 @@ given that the transformed word is also in $L_2$.
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
|
||||
|
||||
\newpage
|
||||
\subsection{Rice's Theorem}
|
||||
\setLabelNumber{definition}{7}
|
||||
\inlinedef $L$ is called a \bi{semantically non-trivial decision problem}, if these conditions apply:
|
||||
@@ -159,13 +175,6 @@ or the condition can be restated such that only $L(M)$ is described by it.
|
||||
For a more formal proof of that condition, simply show that the implication holds
|
||||
|
||||
|
||||
Another result (not formally proven in the script, but there is a proof by intimidation) that can come in useful, especially when trying to show $L \notin \cL_{RE}$ is:
|
||||
\rmvspace
|
||||
\begin{align*}
|
||||
L, L^C \in \cL_{RE} \Longleftrightarrow L \in \cL_R
|
||||
\end{align*}
|
||||
|
||||
|
||||
\stepcounter{subsection}
|
||||
\subsection{The method of the Kolmogorov-Complexity}
|
||||
\inlinetheorem The problem of computing the Kolmogorov-Complexity $K(x)$ for each $x$ is algorithmically unsolvable.
|
||||
|
||||
Reference in New Issue
Block a user