[Analysis] LDE

This commit is contained in:
RobinB27
2025-12-30 11:51:11 +01:00
parent d7f9c5cf9c
commit 2d450cd67d
5 changed files with 119 additions and 24 deletions

View File

@@ -11,5 +11,9 @@
\section{Differential Equations} \section{Differential Equations}
\input{parts/01_diffeq.tex} \input{parts/01_diffeq.tex}
\newpage
\section{Differential Calculus in $\R^n$}
\input{parts/02_diff.tex}
\end{document} \end{document}

View File

@@ -26,12 +26,8 @@ DE s.t. $f: I^d \to \R$ is in multiple variables.
\subsection{Linear Differential Equations} \subsection{Linear Differential Equations}
\definition \textbf{Linear Differential Equation} (LDE)\\ \definition \textbf{Linear Differential Equation} (LDE)\\
$$ $$y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b$$
y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b \subtext{$I \subset \R$ is open$,\quad k \geq 1,\quad \forall i < k: a_i: I \to \C$}
$$
\subtext{
$I \subset \R$ is open$,\quad k \geq 1,\quad \forall i < k: a_i: I \to \C$
}
\definition Homogeneity of LDEs\\ \definition Homogeneity of LDEs\\
\begin{tabular}{ll} \begin{tabular}{ll}
@@ -40,12 +36,8 @@ $$
\end{tabular} \end{tabular}
\remark $D(y) := y^{(k)} + \ldots + a_0y$ is a linear operation: \remark $D(y) := y^{(k)} + \ldots + a_0y$ is a linear operation:
$$ $$D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2)$$
D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2) \subtext{$\forall z_1,z_2 \in \C,\quad f_1,f_2\ k$-times differentiable}
$$
\subtext{
$\forall z_1,z_2 \in \C,\quad f_1,f_2\ k$-times differentiable:
}
\definition \textbf{Homogeneous Solution Space}\\ \definition \textbf{Homogeneous Solution Space}\\
$\S(F) := \{ f: I \to \C \sep f \text{ solves } F, f \text{ is } k \text{-times diff.} \}$ $\S(F) := \{ f: I \to \C \sep f \text{ solves } F, f \text{ is } k \text{-times diff.} \}$
@@ -94,24 +86,122 @@ If $f_1$ solves $F$ for $b_1$, and $f_2$ for $b_2$: $f_1 + f_2$ solves $b_1 + b_
Follows from: $D(f_1) + D(f_2) = b_1 + b_2$. Follows from: $D(f_1) + D(f_2) = b_1 + b_2$.
\newpage \newpage
\subsection{Finding Solutions: First Order} \subsection{Linear Solutions: First Order}
\subtext{ $I \subset \R, \quad a,b: I \to \R$ } \subtext{ $I \subset \R, \quad a,b: I \to \R$ }
$$ y' + ay = b $$
Approach:
\begin{enumerate}
\item Hom. Solution: $y' + ay = 0$ using $f_1 = ke^{-A(x)}$\\
\subtext{Note that $\S$ has $\dim(\S) = 1$, so $f_1 \neq 0$ is a Basis for $\S$}
\item Part. Solution: $f_0 \in \S_b$ using Variance of Parameters
\end{enumerate}
Solutions: $ f_0 + zf_1 \quad \text{ for } z \in \C $
\begin{subbox}{Explicit Solution for 1st Order LDEs} \textbf{Form:}
$$ y' + ay = b $$
\textbf{Approach:}
\begin{enumerate}
\item Hom. Solution $f_1$ for: $y' + ay = 0$\\
\subtext{Note that $\S$ has $\dim(\S) = 1$, so $f_1 \neq 0$ is a Basis for $\S$}
\item Part. Solution $f_0$ for $y' + ay = b$
\end{enumerate}
\textbf{Solutions:} $ f_0 + zf_1 \quad \text{ for } z \in \C $
\begin{subbox}{Explicit Homogeneous Solution}
\smalltext{$A(x)$ is a primitive of $a$, $f(x_0) = y_0$} \smalltext{$A(x)$ is a primitive of $a$, $f(x_0) = y_0$}
\begin{align*} \begin{align*}
f(x) &= z \cdot \exp(-A(x)) \\ f_1(x) &= z \cdot \exp(-A(x)) \\
f(x) &= y_0 \cdot \exp(A(x_0) - a(x)) f_1(x) &= y_0 \cdot \exp(A(x_0) - a(x))
\end{align*} \end{align*}
\end{subbox} \end{subbox}
Variation of Constants: Treating $z$ as $z(x)$ yields:
\begin{subbox}{Explicit Inhomogeneous Solution}
\smalltext{$A(x)$ is a primitive of $a$}
$$
f_0(x) = \underbrace{\left(\int b(x)\cdot\exp(A(x)) \right)}_{z(x)} \cdot \exp\left(-A(x)\right)
$$
\end{subbox}
\method \textbf{Educated Guess}\\
Usually, $y$ has a similar form to $b$:
\begin{tabular}{ll}
\hline
$b(x)$ & \text{Guess} \\
\hline
$a \cdot e^{\alpha x}$ & $b \cdot e^{\alpha x}$ \\
$a \cdot \sin(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
$b \cdot \cos(\beta x)$ & $c\sin(\beta x) + d\cos(\beta x)$\\
$ae^{\alpha x} \cdot \sin(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
$be^{\alpha x} \cdot \cos(\beta x)$ & $e^{\alpha x}\left(c\sin(\beta x) + d\cos(\beta x)\right)$\\
$P_n(x) \cdot e^{\alpha x}$ & $R_n(x) \cdot e^{\alpha x}$\\
$P_n(x) \cdot e^{\alpha x}\sin(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
$P_n(x) \cdot e^{\alpha x}\cos(\beta x)$ & $e^{\alpha x}\left( R_n(x) \sin(\beta x) + S_n(x) \cos(\beta x) \right)$\\
\hline
\end{tabular}
\remark If $\alpha, \beta$ are roots of $P(X)$ with multiplicity $j$, multiply guess with a $P_j(x)$.
\subsection{Linear Solutions: Constant Coefficients}
\textbf{Form:}
$$
y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b
$$
\subtext{Where $a_0, \ldots, a_{k-1} \in \C$ are constants, $b(x)$ is continuous.}
\subsubsection{Homogeneous Equations}
The idea is to find a Basis of $\S$:
\definition \textbf{Characteristic Polynomial} $P(X) = \prod_{i=1}^{k} (X-\alpha_i)$
\remark The unique roots $\alpha_1,\ldots,\alpha_l$ form a Basis:
$$
\text{span}(\S) = \{ x^je^{\alpha_i x} \sep i \leq l,\quad 0 \leq j \leq v_i \}
$$
\subtext{$v_1,\ldots,v_k$ are the Multiplicities of $\alpha_1,\ldots,\alpha_k$}
\remark If $\alpha_j = \beta + \gamma i \in \C$ is a root, $\bar{\alpha_j} = \beta - \gamma i$ is too.\\
To get a real-valued solution, apply:
$$
e^{\alpha_j x} = e^{\beta x}\left( \cos(\gamma x) + i \sin(\gamma x) \right)
$$
\begin{subbox}{Explicit Homogeneous Solution}
\smalltext{Using $\alpha_1,\ldots,\alpha_k$ from $P(X)$ s.t. $\alpha_i \neq \alpha_j$, $z_i \in \C$ arbitrary}
$$
f(x) = \prod_{i=1}^{k} z_i \cdot e^{\alpha_i x} \quad\text{with}\quad f^{(j)(x)} = \prod_{i=1}^{k} z_i \cdot \alpha_i^j e^{\alpha_i x}
$$
\smalltext{Multiple roots: same scheme, using the basis vectors of $\S$}
\end{subbox}
\subtext{Solutions exist $\forall Z = (z_1,\ldots,z_k)$ since that system's $\det(M_Z) \neq 0$.}
\newpage
\subsubsection{Inhomogeneous Equations}
\method \textbf{Undetermined Coefficients}: An educated guess.
\begin{enumerate}
\item $b(x) = cx^d \cdot e^{\alpha x} \implies f_p(x) = Q(x)e^{\alpha x}$\\
\subtext{$\deg(Q) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$}
\item $\begin{rcases*}
b(x) = cx^d \cdot \cos(\alpha x) \\
b(x) = cx^d \cdot \sin(\alpha x)
\end{rcases*} f_p = Q_1(x)\cos(\alpha x) + Q_2(x)\sin(\alpha x)$
\subtext{$\deg(Q_{1,2}) \leq d + v_\alpha$, where $v_\alpha$ is $\alpha$'s multiplicity in $P(X)$}
\end{enumerate}
\remark \textbf{Applying Linearity}\\
If $b(x) = \sum_{i=1}^{n} b_i(x)$, A solution for $b(x)$ is $f(x) = \sum_{i=1}^{n} f_i(x)$\\
\subtext{Sometimes called \textit{Superposition Principle} in this context}
\subsection{Other Methods}
\method \textbf{Change of Variable}\\
If $f(x)$ is replaced by $h(y) = f(g(y))$, then $h$ is a sol. too.\\
\subtext{Changes like $h(t) = f(e^t)$ may lead to useful properties.}
\begin{subbox}{Separation of Variables}
Form:
$$
y' = a(y)\cdot b(x)
$$
Solve using:
$$
\int \frac{1}{a(y)}\ \text{d}y = \int b(x) \dx + c
$$
\end{subbox}
\subtext{Usually $\int 1/a(y)\ \text{d}y$ can be solved directly for $\ln|a(y)|+c$.}

View File

@@ -52,6 +52,7 @@
\def \notation{\colorbox{lightgray}{Notation} } \def \notation{\colorbox{lightgray}{Notation} }
\def \remark{\colorbox{lightgray}{Remark} } \def \remark{\colorbox{lightgray}{Remark} }
\def \theorem{\colorbox{lightgray}{Th.} } \def \theorem{\colorbox{lightgray}{Th.} }
\def \method{\colorbox{lightgray}{Method} }
% For intuiton and less important notes % For intuiton and less important notes
\def \subtext#1{ \def \subtext#1{