mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 10:34:23 +00:00
[Analysis] Setup and start
This commit is contained in:
Binary file not shown.
@@ -4,11 +4,13 @@
|
||||
\input{\dir/include.tex}
|
||||
\load{recommended}
|
||||
|
||||
\setup{Analysis II}
|
||||
\setupCheatSheet{Analysis II}
|
||||
|
||||
\begin{document}
|
||||
\startDocument
|
||||
\maketitle
|
||||
\usetcolorboxes
|
||||
\setcounter{numberingConfig}{3}
|
||||
\setcounter{numberSubsections}{1}
|
||||
|
||||
|
||||
% ╭────────────────────────────────────────────────╮
|
||||
@@ -56,13 +58,19 @@ If you discover any errors, please open an issue or fix the issue yourself and t
|
||||
|
||||
This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind.
|
||||
Thus, the whole Cheat-Sheet can be printed full-sized, if you exclude the title page, contents and this page.
|
||||
You could also print it as two A5 pages per A4 page and also print the
|
||||
\color{MidnightBlue}\fbox{\href{https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet.pdf}{Analysis I summary}}\color{black}
|
||||
\smallhspace in the same manner, allowing you to bring both to the exam
|
||||
|
||||
|
||||
|
||||
% ╭────────────────────────────────────────────────╮
|
||||
% │ Content │
|
||||
% ╰────────────────────────────────────────────────╯
|
||||
\input{parts/diff-eq.tex}
|
||||
\newsection
|
||||
\section{Differential Equations}
|
||||
\input{parts/diffeq/00_intro.tex}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
\newsection
|
||||
\section{Differential Equations}
|
||||
7
semester3/analysis-ii/parts/diffeq/00_intro.tex
Normal file
7
semester3/analysis-ii/parts/diffeq/00_intro.tex
Normal file
@@ -0,0 +1,7 @@
|
||||
\subsection{Introduction}
|
||||
\shortex $f'(x) = f(x)$ has only solution $f(x) = ae^x$ for any $a \in \R$;
|
||||
$f' - a = 0$ has only solution $f(x) = \int_{x_0}^{x} a(t) \smallhspace \dx t$
|
||||
|
||||
\setcounter{all}{6}
|
||||
\shorttheorem Let $F: \R^2 \rightarrow \R$ be a differential function of two variables. Let $x_0 \in \R$ and $y_0 \in \R^2$.
|
||||
The Ordinary Differential Equation (ODE) $y' = F(x, y)$ has a unique solution $f$ defined on a ``largest'' interval $I$ that contains $x_0$ such that $y_0 = f(x_0)$
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsection
|
||||
\subsection{Linear Differential Equations}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsection
|
||||
\subsection{Linear Differential Equations of first order}
|
||||
Reference in New Issue
Block a user