[Analysis] Setup and start

This commit is contained in:
2025-09-30 09:43:36 +02:00
parent 19f8bec6ed
commit 19b2186cff
11 changed files with 22 additions and 5 deletions

View File

@@ -4,11 +4,13 @@
\input{\dir/include.tex}
\load{recommended}
\setup{Analysis II}
\setupCheatSheet{Analysis II}
\begin{document}
\startDocument
\maketitle
\usetcolorboxes
\setcounter{numberingConfig}{3}
\setcounter{numberSubsections}{1}
% ╭────────────────────────────────────────────────╮
@@ -56,13 +58,19 @@ If you discover any errors, please open an issue or fix the issue yourself and t
This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind.
Thus, the whole Cheat-Sheet can be printed full-sized, if you exclude the title page, contents and this page.
You could also print it as two A5 pages per A4 page and also print the
\color{MidnightBlue}\fbox{\href{https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet.pdf}{Analysis I summary}}\color{black}
\smallhspace in the same manner, allowing you to bring both to the exam
% ╭────────────────────────────────────────────────╮
% │ Content │
% ╰────────────────────────────────────────────────╯
\input{parts/diff-eq.tex}
\newsection
\section{Differential Equations}
\input{parts/diffeq/00_intro.tex}
\end{document}

View File

@@ -1,2 +0,0 @@
\newsection
\section{Differential Equations}

View File

@@ -0,0 +1,7 @@
\subsection{Introduction}
\shortex $f'(x) = f(x)$ has only solution $f(x) = ae^x$ for any $a \in \R$;
$f' - a = 0$ has only solution $f(x) = \int_{x_0}^{x} a(t) \smallhspace \dx t$
\setcounter{all}{6}
\shorttheorem Let $F: \R^2 \rightarrow \R$ be a differential function of two variables. Let $x_0 \in \R$ and $y_0 \in \R^2$.
The Ordinary Differential Equation (ODE) $y' = F(x, y)$ has a unique solution $f$ defined on a ``largest'' interval $I$ that contains $x_0$ such that $y_0 = f(x_0)$

View File

@@ -0,0 +1,2 @@
\newsection
\subsection{Linear Differential Equations}

View File

@@ -0,0 +1,2 @@
\newsection
\subsection{Linear Differential Equations of first order}