From 0daf8c15668e1678b30214ce262510060df90fc6 Mon Sep 17 00:00:00 2001 From: Janis Hutz Date: Thu, 2 Oct 2025 15:01:54 +0200 Subject: [PATCH] [NumCS] Remove comments --- .../numcs/parts/01_interpolation/00_polynomial/00_intro.tex | 5 ++--- .../numcs/parts/01_interpolation/00_polynomial/01_monome.tex | 2 +- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/semester3/numcs/parts/01_interpolation/00_polynomial/00_intro.tex b/semester3/numcs/parts/01_interpolation/00_polynomial/00_intro.tex index a94f6bc..75ac36e 100644 --- a/semester3/numcs/parts/01_interpolation/00_polynomial/00_intro.tex +++ b/semester3/numcs/parts/01_interpolation/00_polynomial/00_intro.tex @@ -3,7 +3,7 @@ % └ ┘ % TODO: If you want your email to be in there, note it down here. % I also did not touch the unedited files to avoid conflicts -% FIXME: Add subsection here and use \newsection on all further subsections to reset the counters and add a page break +\subsection{Interpolation und Polynome} Bei der Interpolation versuchen wir eine Funktion $\tilde{f}$ durch eine Menge an Datenpunkten einer Funktion $f$ zu finden.\\ Die $x_i$ heissen Stützstellen/Knoten, für welche $\tilde{f}(x_i) = y_i$ gelten soll. (Interpolationsbedingung) \begin{align*} @@ -36,8 +36,7 @@ Andere Möglichkeiten: $b_j = \cos((j-1)\cos^-1(x))$ \textit{(Chebyshev)} oder $ \fancytheorem{Peano} $f$ stetig $\implies \exists p(x)$ welches $f$ in $||\cdot||_\infty$ beliebig gut approximiert. \setcounter{all}{7} -% FIXME: \inlinedef \textit{(Monom)} = \fancydef{Monom} (exactly the definition of fancy* macros) \fancydef{Raum der Polynome} $\mathcal{P}_k := \{ x \mapsto \sum_{j = 0}^{k} \alpha_j x^j \}$ -\inlinedef \textit{(Monom)} $f: x \mapsto x^k$ +\fancydef{Monom} $f: x \mapsto x^k$ \fancytheorem{Eigenschaft von $\mathcal{P}_k$} $\mathcal{P}_k$ ist ein Vektorraum mit $\dim(\mathcal{P}_k) = k+1$. diff --git a/semester3/numcs/parts/01_interpolation/00_polynomial/01_monome.tex b/semester3/numcs/parts/01_interpolation/00_polynomial/01_monome.tex index 7da3f84..28cd03c 100644 --- a/semester3/numcs/parts/01_interpolation/00_polynomial/01_monome.tex +++ b/semester3/numcs/parts/01_interpolation/00_polynomial/01_monome.tex @@ -1,4 +1,4 @@ -\subsection{Monombasis} +\subsubsection{Monombasis} \fancytheorem{Eindeutigkeit} $p(x) \in \mathcal(P)_k$ ist durch $k+1$ Punkte $y_i = p(x_i)$ eindeutig bestimmt.