[Analysis] Cleaner structure

This commit is contained in:
RobinB27
2025-12-29 12:14:51 +01:00
parent 6cdfd1e8a9
commit 07bfaf0391
31 changed files with 12 additions and 6 deletions

View File

@@ -0,0 +1,85 @@
\documentclass{article}
\newcommand{\dir}{~/projects/latex}
\input{\dir/include.tex}
\load{recommended}
\setupCheatSheet{Analysis II}
\begin{document}
\maketitle
\usetcolorboxes
\setNumberingStyle{3}
\setSubsectionNumbering{1}
% ╭────────────────────────────────────────────────╮
% │ Title page │
% ╰────────────────────────────────────────────────╯
\vspace{2cm}
\begin{Huge}
\begin{center}
TITLE PAGE COMING SOON
\end{center}
\end{Huge}
\vspace{4cm}
\begin{center}
\begin{Large}
\quote{Multiply it by $ai$}
\end{Large}
\hspace{3cm} - Özlem Imamoglu, 2025
\end{center}
\vspace{3cm}
\begin{center}
HS2025, ETHZ\\[0.2cm]
\begin{Large}
Cheat-Sheet based on Lecture notes and Script
\end{Large}\\[0.2cm]
\url{https://metaphor.ethz.ch/x/2025/hs/401-0213-16L/sc/script-analysis-II.pdf}
\end{center}
\newpage
\printtoc{Cyan}
\newpage
\section{Introduction}
This Cheat-Sheet does not serve as a replacement for solving exercises and getting familiar with the content.
There is no guarantee that the content is 100\% accurate, so use at your own risk.
If you discover any errors, please open an issue or fix the issue yourself and then open a Pull Request here:
\url{https://github.com/janishutz/eth-summaries}
This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind.
Thus, the whole Cheat-Sheet can be printed full-sized, if you exclude the title page, contents and this page.
You could also print it as two A5 pages per A4 page and also print the
\color{MidnightBlue}\fbox{\href{https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet.pdf}{Analysis I summary}}\color{black}
\smallhspace in the same manner, allowing you to bring both to the exam.
And yes, she did really miss an opportunity there with the quote\dots But she was also sick, so it's not as unexpected
% ╭────────────────────────────────────────────────╮
% │ Content │
% ╰────────────────────────────────────────────────╯
\newsection
\section{Differential Equations}
\input{parts/diffeq/00_intro.tex}
\input{parts/diffeq/linear-ode/00_intro.tex}
\input{parts/diffeq/linear-ode/01_order-one.tex}
\input{parts/diffeq/linear-ode/02_constant-coefficient.tex}
\section{Differential Calculus in Vector Space}
\input{parts/vectors/differentiation/00_continuity.tex}
\input{parts/vectors/differentiation/01_partial_derivatives.tex}
\end{document}

View File

@@ -0,0 +1,7 @@
\subsection{Introduction}
\shortex $f'(x) = f(x)$ has only solution $f(x) = ae^x$ for any $a \in \R$;
$f' - a = 0$ has only solution $f(x) = \int_{x_0}^{x} a(t) \dx t$
\setcounter{all}{6}
\shorttheorem Let $F: \R^2 \rightarrow \R$ be a differential function of two variables. Let $x_0 \in \R$ and $y_0 \in \R^2$.
The Ordinary Differential Equation (ODE) $y' = F(x, y)$ has a unique solution $f$ defined on a ``largest'' interval $I$ that contains $x_0$ such that $y_0 = f(x_0)$

View File

@@ -0,0 +1,25 @@
\newsectionNoPB
\subsection{Linear Differential Equations}
An ODE is considered linear if and only if the $y$s are only scaled and not part of powers.\\
\compactdef{Linear differential equation of order $k$} (order = highest derivative)
$y^{(k)} + a_{k - 1}y^{(k - 1)} + \ldots + a_1 y' + a_0 y = b$, with $a_i$ and $b$ functions in $x$.
If $b(x) = 0 \smallhspace \forall x$, \bi{homogeneous}, else \bi{inhomogeneous}\\
%
\shorttheorem For open $I \subseteq \R$ and $k \geq 1$, for lin. ODE over $I$ with continuous $a_i$ we have:
\rmvspace
\begin{enumerate}[noitemsep]
\item Set $\mathcal{S}$ of $k \times$ diff. sol. $f: I \rightarrow \C (\R)$ of the eq. is a complex (real) subspace of complex (real)-valued func. over $I$
\item $\dim(\mathcal{S}) = k \smallhspace\forall x_0 \in I$ and any $(y_0, \ldots, y_{k - 1}) \in \C^k$, exists unique
$f \in \mathcal{S}$ s.t. $f(x_0) = y_0, f'(x_0) = y_1, \ldots, f^{(k - 1)}(x_0) = y_{k - 1}$.
If $a_i$ real-valued, same applies, but $\C$ replaced by $\R$.
\item Let $b$ continuous on $I$. Exists solution $f_0$ to inhom. lin. ODE and $\mathcal{S}_b$ is set of funct. $f + f_0$ where $f \in \mathcal{S}$
\end{enumerate}
The solution space $\mathcal{S}$ is spanned by $k$ functions, which thus form a basis of $\mathcal{S}$. If inhomogeneous, $\mathcal{S}$ not vector space.
\shade{gray}{Finding solutions (in general)}
\rmvspace
\begin{enumerate}[label=\bi{(\arabic*)}, noitemsep]
\item Find basis $\{ f_1, \ldots, f_k \}$ for $\mathcal{S}_0$ for homogeneous equation (set $b(x) = 0$) (i.e. find homogeneous part, solve it)
\item If inhomogeneous, find $f_p$ that solves the equation. The set of solutions is then $\mathcal{S}_b = \{ f_h + f_p \divides f_h \in \mathcal{S}_0 \}$.
\item If there are initial conditions, find equations $\in \mathcal{S}_b$ which fulfill conditions using SLE (as always)
\end{enumerate}

View File

@@ -0,0 +1,12 @@
\newsectionNoPB
\subsection{Linear differential equations of first order}
\rmvspace
\shortproposition Solution of $y' + ay = 0$ is of form $f(x) = z e^{-A(x)}$ with $A$ anti-derivative of $a$
\rmvspace
\shade{gray}{Imhomogeneous equation}
\rmvspace
\begin{enumerate}[noitemsep]
\item Plug all values into $y_p = \int b(x) e^{A(x)}$ ($A(x)$ in the exponent instead of $-A(x)$ as in the homogeneous solution)
\item Solve and the final $y(x) = y_h + y_p$. For initial value problem, determine coefficient $z$
\end{enumerate}

View File

@@ -0,0 +1,30 @@
\newsectionNoPB
\subsection{Linear differential equations with constant coefficients}
The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant, where $b(x)$ can be any function.\\
%
\shade{gray}{Homogeneous Equation}\rmvspace
\begin{enumerate}[noitemsep]
\item Find \bi{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i \in \R$).
\item Find the roots of polynomial. The solution space is given by $\{ z_j \cdot x^{v_j - 1} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$.
For $\gamma_i = \alpha + \beta i \in \C$, we have $z_1 \cdot e^{\alpha x}\cos(\beta x)$, $z_2 \cdot e^{\alpha x}\sin(\beta x)$, representing the two complex conjugated solutions.
\end{enumerate}
\rmvspace
\shade{gray}{Inhomogeneous Equation}\rmvspace
\begin{enumerate}[noitemsep]
\item \bi{(Case 1)} $b(x) = c x^d e^{\alpha x}$, with special cases $x^d$ and $e^{\alpha x}$:
$f_p = Q(x) e^{\alpha x}$ with $Q$ a polynomial with $\deg(Q) \leq j + d$, where $j$ is multiplicity of root $\alpha$ (if $P(\alpha) \neq 0$, then $j = 0$) of characteristic polynomial
\item \bi{(Case 2)} $b(x) = c x^d \cos(\alpha x)$, or $b(x) = c x^d \sin(\alpha x)$:
$f_p = Q_1(x) \cdot \cos(\alpha x) + Q_2(x9 \cdot \sin(\alpha x))$,
where $Q_i(x)$ a polynomial with $\deg(Q_i) \leq d + j$, where $j$ is the multiplicity of root $\alpha i$ (if $P(\alpha i) \neq 0$, then $j = 0$) of characteristic polynomial
\end{enumerate}
\rmvspace\shade{gray}{Other methods}\rmvspace
\begin{itemize}[noitemsep]
\item \bi{Change of variable} Apply substitution method here, substituting for example for $y' = f(ax + by + c)$ $u = ax + by$ to make the integral simpler.
Mostly intuition-based (as is the case with integration by substitution)
\item \bi{Separation of variables} For equations of form $y' = a(y) \cdot b(x)$ (NOTE: Not linear),
we transform into $\frac{y'}{a(y)} = b(x)$ and then integrate by substituting $y'(x) dx = dy$, changing the variable of integration.
Solution: $A(y) = B(x) + c$, with $A = \int \frac{1}{a}$ and $B(x) = \int b(x)$.
To get final solution, solve for the above equation for $y$.
\end{itemize}

View File

@@ -0,0 +1,68 @@
\stepcounter{subsection}
\subsection{Continuity}
\compactdef{Convergence in $\R^n$} Let $(x_k)_{k \in \N}$ where $x_k \in \R^n$ with $x_k = (x_{k, 1}, \ldots, x_{k, n})$ and let $y = (y_1, \ldots, y_n) \in \R^n$.
$(x_k)$ converges to $y$ as $k \rightarrow +\infty$ if $\forall \varepsilon > 0 \smallhspace \exists N \geq 1$ s.t. $\forall n \geq N$ we have $||x_k - y|| < \varepsilon$\\
% ────────────────────────────────────────────────────────────────────
\shortlemma $(x_k)$ converges to $y$ as $k \rightarrow +\infty$ iff one of following equiv. statements holds:
\bi{(1)} $\forall 1 \leq i \leq n$, the sequence $(x_{k, i})$ with $x_{k, i} \in \R$ converges to $y_i$
\bi{(2)} $(||x_k - y||)$ converges to $0$ as $k \rightarrow +\infty$\\
% ────────────────────────────────────────────────────────────────────
\compactdef{Continuity} Let $X \subseteq \R^n$ and $f: X \rightarrow \R^m$.
\bi{(1)} Let $x_0 \in X$. $f$ continuous in $\R^n$ if $\forall \varepsilon > 0 \smallhspace \exists \delta > 0$ s.t. if $x \in X$ satisfies $||x - x_0|| < \delta$,
then $||f(x) - f(x_0)|| < \varepsilon$
\bi{(2)} $f$ continuous \textit{on} $X$ if continuous at $x_0 \smallhspace \forall x_0 \in X$
% TODO: Add tricks from TA slides here (week 05 / 04)
% ────────────────────────────────────────────────────────────────────
\shortproposition Let $X$ and $f$ as prev. Let $x_0 \in X$. $f$ continuous at $x_0$ iff $\forall (x_k)_{k \geq 1}$ in $X$ s.t.
$x_k \rightarrow x_0$ as $k \rightarrow +\infty$, $(f(x_k))_{k \geq 1}$ in $\R^m$ converges to $f(x)$\\
% ────────────────────────────────────────────────────────────────────
\compactdef{Limit} Let $X$, $f$ and $x_0$ as prev. and $y \in \R^m$. $f$ \textit{has limit} $y$ as $x \rightarrow x_0$ with $x \neq x_0$ if
$\forall \varepsilon > 0 \smallhspace \exists \delta > 0$ s.t. $\forall x \neq x_0 \in X, ||x - x_0|| < \delta$ we have $||f(x) - y|| < \varepsilon$.
We write $\lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} f(x) = y$
\shortremark Also possible without ass. that $x_0 \in X$
% ────────────────────────────────────────────────────────────────────
\shortproposition Let $X$, $f$, $x_0$ and $y$ as prev. We have $\lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} f(x) = y$
iff $\forall (x_k)$ in $X$ s.t. $x_k \rightarrow x$ as $k \rightarrow +\infty$ and $x_k \neq x_0$ $(f(x_k))$ in $\R^m$ converges to $y$
\stepLabelNumber{all}
\shortproposition Let $X \subseteq \R^n$, $y \subseteq \R^m$, $p \in \N$ and let $f: X \rightarrow Y$ and $g: Y \rightarrow \R^p$ be cont. Then $g \circ f$ is continuous
% ────────────────────────────────────────────────────────────────────
\numberingOff
\inlineremark To find the limits, we have two tricks (for $\limit{(x, y)}{(a, b)}$):
\rmvspace
\begin{enumerate}[noitemsep]
\item \bi{(Substitution)} Substitute $y = x + (b - a)$, then limit is $\limit{x}{(a - b)}$
\item \bi{(Polar coordinates)} Substitute $x = r \cos(\varphi)$ and $y = r \sin(\varphi)$ and the limit is $\limit{r}{0}$
\end{enumerate}
\numberingOn\rmvspace
\shortex \bi{(1)} $f_1 : \R^n \rightarrow \R^{m_1}$ and $f_2 : \R^n \rightarrow \R^{m_2}$ continuous
$\Rightarrow f = (f_1, f_2): \R^n \rightarrow \R^{m_1 + m_2}$ is continuous (Cartesian product)
\bi{(2)} Any linear map $f: \R^n \rightarrow \R^m$ is continuous. In particular, the identity map is continuous
\bi{(3)} If $f_1, \ldots, f_n$ continuous, then $f(x_1, \ldots, x_n) = f_1(x_1) \cdot \ldots \cdot f_n(x_n)$ is continuous
\bi{(4)} Polynomials in $x_1, \ldots, x_n$ are continuous
\bi{(5)} $f_1f_2$ is continuous if $f_1$ and $f_2$ are continuous and if $f_2(x) \neq 0 \smallhspace \forall x \in X$, then $f_1 \div f_2$ is continuous.
(see Theorem 2.1.8 in Analysis I)\\
\bi{(6)} If both $f$ and $g$ have limits, then $\displaystyle \limit{x}{x_0}(f(x) + g(x)) = \limit{x}{x_0} f(x) + \limit{x}{x_0} g(x)$ and analogous for $\times$
\bi{(7)} If $f: \R^2 \rightarrow \R$ continuous, then $g(x) = f(x, y_0)$ for $y_0 \in \R$ is continuous. The converse is not true\\
% ────────────────────────────────────────────────────────────────────
\shortdef \bi{(1)} $X \subseteq \R^n$ is \bi{bounded} if the set of $||x||$ for $x \in X$ is bounded in $\R$
\bi{(2)} $X \subseteq \R^n$ is \bi{closed} if $\forall (x_k)$ in $X$ that converge in $\R^n$ to some vector $y \in \R^n$, we have $y \in X$
% Closed simple explanation: "border" included or not (and is not in case of open disc because limit is outside, i.e. limit of a_n = (n / (n + 1), 0) is 1)
\bi{(3)} $X \subseteq \R^n$ is \bi{compact} if it is bounded and closed\\
% ────────────────────────────────────────────────────────────────────
\shortex \bi{(1)} $\emptyset$ and $\R^n$ are closed.
\bi{(2)} The \textit{open} disc $D = \{ x \in \R^n : ||x - x_0|| < r \}$ for $r > 0$ and $x_0 \in \R^n$ is bounded and not closed.
\bi{(3)} The \textit{closed} disc $\Delta = \{ x \in \R^n : ||x - x_0|| \leq r \}$ is bounded and closed. In particular, a closed interval is a closed set.
An interval is compact if it is bounded
\bi{(4)} If $X_1 \subseteq \R^n$ and $X_2 \subseteq \R^m$ are bounded (also closed or compact), then so is $X_1 \times X_2 \subseteq \R^{n + m}$\\
% ────────────────────────────────────────────────────────────────────
\shortproposition Let $f: \R^n \rightarrow \R^m$ be a continuous map. For any closed $Y \subseteq \R^m$,
the set $f^{-1}(Y) = \{ x \in \R^n : f(x) \in Y \} \subseteq \R^n$ is closed\\
% ────────────────────────────────────────────────────────────────────
\shortex The \bi{zero set} $Z = \{ x\in \R^n : f(x) = 0 \}$ is closed in $\R^n$ because $\{ 0 \} \subseteq \R$ is closed.
More generally: for any $r \geq 0$, $\{ x \in \R^n : |f(x)| \leq r \}$ is $f^{-1}([-r, r])$ and is closed, since $[-r, r]$ is closed.
Furthermore: $\{ x\in \R^3 : ||x - x_0|| = r \}$ is closed\\
% ────────────────────────────────────────────────────────────────────
\shorttheorem Let $(X \neq \emptyset) \subseteq \R^n$ compact and $f: X \rightarrow \R$ continuous.
Then $f$ bounded, has $\max$ and $\min$, i.e. $\exists x_+, x_- \in X$ s.t. $\displaystyle f(x_+) = \sup_{x \in X} f(x)$ and $\displaystyle f(x_-) = \inf_{x \in X} f(x)$
% ────────────────────────────────────────────────────────────────────

View File

@@ -0,0 +1,24 @@
\newsectionNoPB
\subsection{Partial derivatives}
\shortdef $X \subseteq \R^n$ \bi{open} if for any $x = (x_1, \ldots, x_n) \in X$ $\exists \delta > 0$ s.t.
$\{ y = (y_1, \ldots, y_n) \in \R^n : |x_i - y_i| < \delta \smallhspace \forall i \}$ is contained in $X$.
(= changing a coordinate of $x$ by $< \delta \rightarrow x' \in X$)
\shortproposition $X \subseteq \R^n$ open $\Leftrightarrow$ \bi{complement} $Y = \{ x \in \R^n : x \notin X \}$ is closed
\shortcorollary If $f: \R^n \rightarrow \R^m$ cont. and $Y \subseteq \R^m$ open, then $f^{-1}(Y)$ is open in $\R^n$
\shortex \bi{(1)} $\emptyset$ and $\R^n$ are both open and closed.
\bi{(2)} Open ball $D = \{ x \in \R^n : ||x - x_0|| < r \}$ is open in $\R^n$ ($x_0$ the center and $r$ radius)
\bi{(3)} $I_1 \times \dots \times I_n$ is open in $\R^n$ for $I_i$ open
\bi{(4)} $X \subseteq \R^n$ open $\Leftrightarrow$ $\forall x \in X \exists \delta > 0$ s.t. open ball of center $x$ and radius $\delta$ is contained in $X$
\compactdef{Partial derivative} Let $X \subseteq \R^n$ open, $f: X \rightarrow \R^m$ and $1 \leq i \leq n$.
Then $f$ has partial derivative on $X$ with respect to the $i$-th variable (or coordinate),
if $\forall x_0 = (x_{0, 1}, \ldots, x_{0, n}) \in X$, $g(t) = f(x_{0, 1}, \ldots, x_{0, i - 1}, t, x_{0, i + 1}, x_{0, n})$ on set
$I = \{ t \in \R : (x_{0, 1}, \ldots, x_{0, i - 1}, t, x_{0, i + 1}, \ldots, x_{0, n}) \in X \}$ is differentiable at $t = x_{0, i}$.
The derivative $g'(x_{0, i})$ at $x_{0, i}$ is denoted:
$\frac{\partial f}{\partial x_i}(x_0), \partial_{x_i} f(x_0) \text{ or } \partial_i f(x_0)$\\
%
\shortproposition Let $X \subseteq \R^n$ open, $f, g : X \rightarrow \R^m$ and $1 \leq i \leq n$. Then:
\bi{(1)} If $f$ \& $g$ have $\partial_i$ on $X$, then so does $f + g$ and $\partial_{x_i} (f + g) = \partial_{x_i}(f) + \partial_{x_i}(g)$
\bi{(2)} If $m = 1$ (i.e. $\R^1$) and $f$ \& $g$ have $\partial_i$ on $X$, then so does $fg$ and $\partial_{x_i} (fg) = \partial_{x_i}(f)g + f \partial_{x_i}(g)$
and if $g(x) \neq 0 \smallhspace \forall x \in X$, then if $f \div g$ has $\partial_i$ on $X$, then so does $f \div g$ and
$\partial_{x_i}(f \div g) = (\partial_{x_i}(f) g - f \partial_{x_i}(g)) \div g^2$